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- AC Immune. AC Immune SA (Switzerland) 

§ Grant Agreement. The agreement signed between the beneficiaries and the IMI JU for the 
undertaking of the ROADMAP project (116020). 

§ Project. The sum of all activities carried out in the framework of the Grant Agreement. 
§ Work plan. Schedule of tasks, deliverables, efforts, dates and responsibilities corresponding to 

the work to be carried out, as specified in Annex I to the Grant Agreement. 
§ Consortium. The ROADMAP Consortium, comprising the above-mentioned legal entities. 
§ Consortium Agreement. Agreement concluded amongst ROADMAP participants for the 

implementation of the Grant Agreement. Such an agreement shall not affect the parties’ 
obligations to the Community and/or to one another arising from the Grant Agreement. 
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Abbreviations 

AD Alzheimer’s Disease 
APCC Alzheimer’s Prevention Initiative Composite Cognitive test score 
MCI Mild Cognitive Impairment 
MMSE Mini-Mental State Examination 
NACC National Alzheimer's Coordinating Center 
RRE Remote Research Environment 
TRIPOD Transparent Reporting of a multivariable prediction model for 

Individual Prognosis Or Diagnosis 
TTE Time to event 
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Publishable Summary 

This deliverable reports on the external validation of three disease progression models for AD 
dementia: Handels’ Mini-Mental State Examination (MMSE) model, Novartis’ preclinical model, and 
Eli Lilly’s institutionalization model. For each of these models, data sources for external validation 
were sought. A validation pipeline was developed to standardize the analyses across multiple data 
sources, reduce the workload of database custodians, and increase transparency and repeatability. 
The pipeline consists of the following steps: documentation of the model development and 
validation steps, specification of a statistical analysis plan, extraction and standardization of the 
data, and generation of the validation results. 

For the MMSE model, we applied the validation pipeline to a variety of data sources, including 
electronic health record databases, population-based cohorts, and memory-clinic data sources. We 
also applied the pipeline to the data that were originally used to develop the model. Results indicate 
poor to moderate prediction of MMSE scores for individual cases, both for the validation sets and 
the development set. 

The preclinical model consisted of three submodels: a time to event model that predicts time to first 
diagnosis of MCI and AD dementia, and two models that predict progression of the Alzheimer’s 
Prevention Initiative Composite Cognitive (APCC) score. These models were validated on two 
external datasets. Since APCC was not available in the external data sets, APCC proxies were 
constructed. Validation results indicate satisfactory performance for the APCC models, while the 
TTE model tended to overestimate the overall survival probability. 

For the institutionalization model, it was difficult to find external data sets that contained all variables 
required by the model. The one data source that was selected for external validation contained most 
of the variables but required conversion of the scales for functional ability. Validation results show a 
large overestimation of the predicted times for the patients who were institutionalized during follow-
up. 

We conclude that the validation pipeline was successfully applied to a large number of data 
sources, and provides a viable approach to generate validation results in a standardized and 
reproducible way while minimizing the workload of database custodians. The validation results 
indicate that the predictions of the MMSE model for individual patients are poor to moderate. 
Although the preclinical model showed satisfactory performance in predicting individual APCC time 
courses, the TTE submodel tended to overestimate the overall survival probability. The 
institutionalization model largely overestimates the time to institutionalization during follow-up. 
These results may partly be explained by differences in setting and patient characteristics between 
the model development set and the validation sets, but also highlight the importance of comparing 
external with internal validation results. Finding suitable data sets for external validation of models 
that are more complicated than the MMSE model can be extremely hard, mostly because there is a 
large variety of variables across data sets and the variables used in the model only partly match 
those available in the data sources.  
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1. Introduction 
In the past decades, various disease progression models related to Alzheimer’s Disease (AD) 
dementia have been proposed in the literature. Disease progression models play a crucial role in 
both the assessment of any therapeutic intervention in the disease process and understanding the 
(economic) impact of these interventions, and may inform patient recruitment for randomized clinical 
trials. In Deliverable 4.1, “Catalogue of RWE relevant AD models and simplistic disease stage 
framework”, we performed a literature review of disease progression models and identified a total of 
62 different models described in 43 studies. Very few of these models have been externally 
validated, i.e., their performance has not been assessed on other data sets than the ones that were 
used to develop the models. Thus, it is not clear how well these progression models generalize to 
other settings than the ones in which they were developed. Validation on external data sets could 
clarify this issue and is the subject of this deliverable. 

External validation of disease progression models is not an easy task. Finding data sets that can be 
used for external validation may be problematic. The variables that are contained in the validation 
sets must match the input and outcome variables required by a given model (possibly after 
transformation if a variable cannot be matched directly). Also the patient population on which the 
model is validated has to be in line with the population that was used to develop the model. If 
multiple data sets are available for validation, one has to ensure that the analyses on the different 
data sets are standardized as much as possible. Finally, a validation exercise should allow for 
privacy and governance issues that may prohibit sharing of validation data sets and require data 
processing and generation of validation results to be done locally, at the site where the validation 
data reside.  

As external validation of all disease progression models that were culled from the literature review is 
clearly out of scope, we limited ourselves to three different models: Handels’ Mini-Mental State 
Examination (MMSE) model (Handels et al., 2013), Novartis’ preclinical model (Caputo et al., 2017), 
and Eli Lilly’s institutionalization model (Belger et al., 2018). The criteria and considerations that led 
to the selection of these three models have extensively been described in Deliverable 4.3, 
“Selection of appropriate disease models for validation”. Briefly, the criteria included data availability 
(model variable requirements should not be so stringent that no other data source would be able to 
provide the right data; at least one of the selected models should have “low” data requirements, i.e., 
many data sources should be able to provide the data required for model validation), detailed 
understanding of the model (preferably the original developer of the model should be involved in the 
validation team), and specific interest of partners participating in ROADMAP.   

Here, we will first describe a generic validation pipeline that was established to externally validate 
disease progression models and to standardize the generation of validation results across multiple 
external data sources. We will then, for each of the three selected progression models, describe the 
model in more detail, give an overview of the data sets that were selected for external validation, 
and present and discuss the validation results that were obtained. Finally, we will conclude with a 
general discussion on the issues and challenges in external validation of disease progression 
models. 
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2. Validation pipeline 
A generic validation pipeline was developed to standardize the processing of multiple external data 
sets for a given disease progression model. The pipeline consists of five steps, where all but the 
first step are done for each external data source: 

1. Fill in a TRIPOD development checklist 

For each external data set: 

2. Fill in a TRIPOD validation checklist 

3. Specify data processing and analysis details in a statistical analysis plan (SAP) 

4. Perform data extraction and transformation 

5. Generate the model validation results 

In the following, the different steps in the pipeline will be described in more detail. 

Step 1 is meant to get a good insight into the purpose of the model and how it was developed. For 
this, we require that a TRIPOD (Transparent Reporting of a multivariable prediction model for 
Individual Prognosis Or Diagnosis) development checklist is filled in. TRIPOD checklists have been 
developed as tools to stimulate transparent reporting of prediction model studies (Collins et al., 
2015; Moons et al., 2015). The checklists include a total of 22 items. The checklists come into two 
flavors: a development checklist that contains items relevant for model development, and a 
validation checklist that contains items relevant for model validation. Part of the items in both 
checklists overlap. Annex I provides a list of all items and whether they are part of the development 
or validation checklist, or both. 

The remaining four steps in the validation pipeline are executed for each data set that is used to 
validate the model.  

Step 2 involves filling in the TRIPOD validation checklist. Part of the items in this checklist will not 
change between different external data sets (such as assessment of validation results), but items 
that are specific for the external data set (such as data acquisition and size) need to be specified 
per data set. 

Step 3 requires that the statistical analysis plan (SAP) is updated with information about the external 
data set. In particular, a general description of the data set has to be added, together with a detailed 
description of mapping of variables (if any) and how diagnosis was established. The SAP also 
specifies the study cohort, the variables that need to be collected and in what format, data 
transformations and data processing, and all output and validation results that will be generated.  

In step 4 the data that are needed for the model validation, are extracted from the external data set 
and transformed as specified in the SAP. For this we use a software tool called Jerboa (Figure 1). 
Jerboa takes as its input three simple, standardized files with data about patients, events, and 
measurements, as specified in the Jerboa data preparation and processing manual and in the SAP. 
The output of Jerboa consists of anonymized analytical data sets that can be used for further 
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processing. The input files have to be supplied by the database custodian, but because of their 
simplicity, the effort in creating these files is minimized.  

It should be noted that Jerboa is typically installed and executed locally, i.e., there is no need to 
transfer the data outside the local environment. Jerboa is under full control of the database 
custodian. Its output can be viewed and approved before it is allowed to be used for further 
processing. Jerboa runs on a Java platform, which practically means that it can be executed on any 
computer system. The tool was developed at the Erasmus MC, Rotterdam, and has been used in 
many multinational observational data studies (Coloma et al., 2011; Trifiro et al., 2014). 

 

 
Figure 1. Local data extraction and transformation using the Jerboa tool. 

 

Finally, in step 5 validation results are generated by an R script based on the analytical datasets 
produced by Jerboa, and made available in a secure remote research environment (RRE). As RRE 
we used the Octopus system (Figure 2) developed by Erasmus MC (Trifiro et al., 2014). There are 
two options here: either the R script can be executed locally and only the validation results are 
uploaded to the RRE, or the anonymized analytical datasets (after encryption) are first uploaded to 
the RRE and then the R script is run on the RRE. 

 

 
Figure 2. Octopus remote research environment. 
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3. Validation of Handels’ MMSE model 

3.1. Model description 

Handels et al. (2013) developed a model to predict the natural progression of cognition as assessed 
by the MMSE score in incident cases of AD dementia in a population of people aged 75 years and 
older. The model was developed using data from the Kungsholmen project, a population-based 
cohort following all registered inhabitants of the Kungsholmen district in Stockholm, Sweden. 
Clinical assessments of the 1,082 cognitively healthy subjects at baseline took place at 3-, 6-, and 
9-years follow-ups. A potential dementia diagnosis was carried out by physicians based on clinical 
examination and cognitive tests using DRM-III-R/NINCDS-ADRDA criteria. A total of 323 incident 
cases of AD dementia were identified during follow-up. The onset of AD was assumed to have 
taken place in the middle of the follow-up interval. 

The prediction equation for MMSE is as follows: 

MMSE = 26.87 - 3.26 * Time - 0.35 * (Age - 75) + 0.10 * Time * (Age - 75), 

where Time is years after being diagnosed with AD dementia, and Age is patient age at the time of 
the measurement that is to be predicted.  

For the validation data sets, subjects were eligible if they were diagnosed as incident AD dementia 
cases, were aged 75 years or older at diagnosis, and had at least one MMSE measurement after 
date of diagnosis. The two predictors, Age and Time, were derived from the date of birth, date of AD 
dementia onset, and date of MMSE measurement. The onset of AD was assumed to have taken 
place in the middle of the follow-up interval preceding the visit at which dementia was diagnosed. 
Since follow-up intervals lasted an average of 3 years, this was operationalized by adding a time 
correction of 1.5 years to the Time variable. 

3.2. Data sources 

External validation of the MMSE model was performed on a variety of data sources. The selection 
of data sources has been documented in Deliverable 3.4, “Final report on proof of concept technical 
solutions for RWE data harmonisation and integration”. Briefly, selection was based on information 
from the EMIF-AD and EMIF-EHR Catalogues, as well as additional information about data sources 
from ROADMAP consortium partners. The selected data sources can be divided in electronic health 
record databases, population-based cohorts, and memory clinic registries. They include the 
following: 

§ GOTHENBURG H70 Studies & Prospective Population Study of Women (PPSW) (Johansson et 
al., 2010; Arnoldussen et al., 2018). On-going studies with complex cohort-sequential design 
(longitudinal and cross-sectional cohorts) of 70-year-olds that started in 1971 (H70 Studies) and 
women of different ages (PPSW) that started in 1968. Participants were selected from the 
Revenue Office Register based on certain birth dates, without screening. They participate in 
longitudinal follow-ups at regular intervals until cohort extinction. Some cohorts have been 
enlarged with new individuals at ages of 85 years and older. Diagnoses are based on DSM-III-R. 
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§ IPCI (Integrated Primary Care Information) (Vlug et al., 1999). The IPCI database is a Dutch 
primary care database with continuous data collection since 1995 on a total of 2.8 million 
individuals, of whom 1.8 million are currently active. The average follow-up for individuals is 3 
years. The full medical record is available, including free text. IPCI uses the ICPC coding 
system.  

§ SIDIAP (Information System for the Development of Research in Primary Care) (García-Gil Mdel 
et al., 2011). SIDIAP is a Catalan primary care database with continuous data collection since 
2006 on a total of almost 7.5 million individuals, of whom 5.5 million are currently active. The 
average follow-up for individuals is 7.4 years. SIDIAP uses the ICD-10 coding system. 

§ SIDIGI, a linkage between SIDIAP (García-Gil Mdel et al., 2011) and the Register of Dementias 
of Girona (ReDeGi) (Garre-Olmo et al., 2009). ReDeGi is an epidemiological surveillance device 
that provides information about the clinical and demographic characteristics of all new cases of 
dementia in Girona province (0.7 million inhabitants). This linkage encompasses all patients 
recorded in ReDeGi who had an EHR in SIDIAP (about 5,000 persons) and provides a unique 
data source that combines longitudinal real-world data with high-quality dementia records 
obtained from specialists. 

§ Copenhagen. The Copenhagen database includes approximately 2.75 million patients who have 
been admitted to hospitals in the capital region and the region of Zealand, Denmark, between 
2006-2016. Data include all diagnoses coded in ICD-10, tests, procedures, drugs administered 
during the hospital stay, results from laboratory and biochemical tests, and free text. Patients 
with AD dementia were distinguished in those who received none, one, or more than one 
dementia drug. The drugs considered were donepezil, galantamine, rivastigmine, and 
memantine. 

§ EDAR (acronym of “Beta amyloid oligomers in the early diagnosis of AD and as marker for 
treatment response”) (Barnett et al., 2010). EDAR is a longitudinal observational cohort of 
individuals recruited from memory clinics across Europe. Individuals were recruited between 
2008 and 2010 and follow-up assessments were performed within three years after baseline. 

§ Girona (Garre-Olmo et al., 2010). The GIRONA clinical cohort is a two-year prospective cohort 
study of patients recruited in a memory clinic located in the Santa Caterina hospital in Girona 
(Catalonia). A total of 905 individuals were recruited between 1998 and 2011 and the follow-up 
assessments were performed every 6 months. Among measures of disease progression, 
cognitive functions were assessed with the Cambridge Cognitive Examination and the MMSE by 
trained neuropsychologists. 

§ ICTUS (Impact of Cholinergic Treatment Use) (Canevelli et al., 2016). The ICTUS study is a 
prospective multicenter cohort study aimed at evaluating the clinical course, treatment outcome, 
and the socioeconomic impact of AD in Europe. It involved 29 participating centers from 12 
European countries. After baseline assessment (from 2003 to 2005), participants were followed 
up to 2 years with midterm reevaluations every 6 months. 

§ MEMENTO (Dufouil et al., 2017). The MEMENTO cohort is a clinic-based study of patients 
presenting with a large variety of cognitive symptoms and subjective cognitive complaints, who 
are followed over a 5-year period. From April 2011 to June 2014, 2323 patients were enrolled in 
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28 centers of the French national network of university-based memory clinics (Centres de 
Mémoires de Ressources et de Recherche). 

We wanted to compare model performance on the external validation sets with model performance 
on the Kungsholmen data that was used to develop the model, but the original publication (Handels 
et al., 2013) did not report those results. We therefore applied for access to the Kungholmen data, 
with the kind help of Ron Handels, and were granted access for this study. 

3.3. Validation results 

The validation pipeline was executed for all selected external data sources. Validation checklists 
were filled in (see Annex II for the development checklists and Annex III for an example of the 
validation checklists) and the SAP was constructed. Based on the SAP, the Jerboa tool was tuned 
for this study, a Jerboa installation and user manual was written (Annex IV), and an R script that 
generates the validation results was developed. Tuning of Jerboa was done by the Jerboa 
development team at Erasmus MC and took about half a week of work. Writing of the SAP and 
Jerboa installation and user manual took about one and a half week, and developing the R script 
another week. 

For each data source, Jerboa was used to extract and transform the data. The resulting analytical 
data sets were processed by the R script. The output of the R script consisted of summary 
characteristics of the data, plots of the observed MMSE values as a function of time relative to index 
date (i.e., the date of AD dementia onset), plots of the observed versus predicted MMSE values, 
plots of the difference between predicted and observed MMSE values as a function of time since 
diagnosis, and model performance measures. Performance measures consisted of the slope, 
intercept, and R-squared value of a linear regression between observed and predicted MMSE 
values, the median absolute deviation of the difference between predicted and observed values 
(MAD = median( |diffi – median(diffi)| ) ), and the median and interquartile range of the (absolute) 
difference between predicted and observed values. We chose to compute several performance 
measures as they capture different aspects of model performance and a single “best” measure does 
not exist.  

The data summary characteristics of the development set (Kungsholmen) and the different 
validation sets are given in Table 1. The number of patients and number of MMSE measurements 
varied greatly across the different data sources, with the largest numbers occurring in the SIDIAP, 
Copenhagen, and IPCI EHR databases. Only the Gothenburg validation set consisted of population-
based cohorts, like the Kungsholmen development set, but was smaller in size. The Gothenburg 
and SIDIGI data sets had the longest follow-up times, comparable to the Kungsholmen data. 
Follow-up times for IPCI and EDAR were very short.  
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Table 1: Characteristics of data sources that were used for development and validation of the MMSE model. 

Data source Type1 Patients     
(N) 

Age, median 
(yr) 

Female    
(%) 

Measurements    
(N) 

Follow-up2     
(yr) 

Kungsholmen PC 344 85 83 499 1.5 (1.5, 4.5) 

Gothenburg PC 118 82 94 131 3.5 (2.0, 5.5) 

IPCI EHR 2,014 84 68 2,829 0.1 (0.0, 0.8) 

SIDIAP EHR 11,181 83 69 14,466 1.2 (0.2, 3.0) 

SIDIGI EHR + MC 365 81 69 448 2.1 (1.1, 3.8) 

Copenhagen EHR 1,4963 84 69 3,107 0.4 (0.1, 1.3) 

  2,0544 83 64 5,008 0.6 (0.1, 1.7) 

  2695 82 60 849 1.4 (0.4, 2.6) 

EDAR MC 23 80 39 32 0.2 (0.2, 0.8) 

Girona MC 375 80 68 1,665 0.6 (0.0, 1.5) 

ICTUS MC 803 80 67 2,995 1.0 (0.4, 1.6) 

MEMENTO MC 115 82 52 399 0.5 (0.0, 1.5) 
1EHR = electronic health record, MC = memory clinic, PC = population-based cohort; 2Values indicate median 
(interquartile range); 3Patients who did not receive any dementia drug; 4Patients who received one dementia drug; 
5Patients who received more than one dementia drug. 

 

Figure 3A shows the observed MMSE measurements as a function of time relative to the index date 
(i.e., the date of onset of AD dementia) for the Kungsholmen development set. As expected, the 
measured MMSE values show a clear declining trend after the index date, but it should also be 
noted that the variability in the MMSE measurements is extremely large. The predicted MMSE 
values show a similar decreasing trend (Figure 3B), but with much smaller variability of the 
estimates as compared to the observed MMSE values. Therefore, the predicted MMSE values for 
individual patients poorly match the observed values, as shown in Figure 3C. The poor prediction is 
also reflected in the large variability of the differences between the observed and predicted MMSE 
values as a function of time after index date (Figure 3D). However, Figure 3D also shows that the 
median differences over time are (almost) zero, indicating that the median of the MMSE predictions 
matches well with the median of the observed values. 
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A 

 

B 

 

C 

 

D 

 

Figure 3. Validation results of the MMSE model for the Kungsholmen development set. (A) Observed MMSE as a 
function of time relative to the index date; (B) Predicted MMSE as a function of time relative to the index date; (C) 

Observed versus predicted MMSE; (D) Difference between observed and predicted MMSE as a function of time 
relative to the index date. 

 

The measures that quantify model performance are shown in Table 2. For the Kungsholmen 
development set, the slope is only 0.21 with a moderate R-squared of 0.173. The MAD and median 
absolute difference between observed and predicted MMSE values are larger than 4, reflecting the 
limited accuracy of the model to predict MMSE for individual patients. Only the median of the overall 
differences between observed and predicted values is close to 0.  
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Table 2: Performance of the MMSE model for the development set and different external validation sets. 

Data source Linear regression MAD1 Median difference (IQR)  Median absolute difference (IQR)  

 Slope Intercept R-squared   

Kungsholmen 0.21 14.00 0.173 4.01 0.24 (-4.75, 3.56) 4.16 (1.99, 7.35) 

Gothenburg 0.36 8.81 0.333 4.73 2.89 (-2.37, 7.13) 5.24 (2.84, 8.61) 

IPCI 0.04 21.41 0.007 3.82 1.86 (-5.86, 1.85) 3.80 (1.86, 6.66) 

SIDIAP 0.18 17.04 0.114 6.21 -6.17 (-12.48, -0.06) 7.41 (3.38, 12.85) 

SIDIGI 0.19 15.20 0.108 5.64 -4.27 (-9.94, 1.35) 6.22 (3.10, 10.66) 

Copenhagen 0.062 20.17 0.011 4.40 -0.58 (-5.65, 3.38) 4.35 (2.11, 7.61) 

 0.063 19.84 0.010 4.16 -0.83 (-5.00, 3.31) 4.18 (1.96, 7.03) 

 0.154 17.19 0.050 3.82 -0.94 (-4.94, 2.77) 3.81 (1.83, 6.86) 

EDAR 0.01 23.36 0.001 3.92 -3.05 (-6.34, 1.63) 4.13 (2.14, 6.34) 

Girona 0.10 20.79 0.022 2.93 -4.34 (-7.30, -1.45) 4.55 (2.26, 7.32) 

ICTUS 0.09 20.26 0.034 3.55 -2.67 (-6.25, 0.86) 3.87 (1.74, 6.66) 

MEMENTO 0.14 19.11 0.059 3.31 -0.34 (-3.83, 2.90) 3.24 (1.58, 5.03) 
1MAD = Median absolute deviation; 2For patients who did not receive a dementia drug; 3For patients who received one dementia drug; 4For patients who received more than 
one dementia drug. 
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Table 2 also shows the model performance for the external validation sets. Overall, model 
performance is poor to moderate. In the following, we will illustrate and discuss the validation results 
for a number of data sources in more detail. 

The population-based Gothenburg cohort obtained an R-squared value of 0.333, higher than for the 
development set. The Gothenburg cohort has a long follow-up. The observed and predicted MMSE 
scores as a function of time (Figure 4 and Figure 5) show a similar declining pattern as for the 
Kungsholmen data. Although the relatively high R-squared indicates that the model can explain part 
of the variability in the MMSE measurements and the model predictions clearly correlate with the 
observed values (Figure 6), the accuracy of the predictions is generally poor, with large MAD and 
median absolute difference. The median of the differences between observed and predicted MMSE 
was 2.89, indicating that the model overall underestimates MMSE for this data set. Figure 7 shows 
that this occurs mostly in the first five years after the index date.  

 

 
Figure 4. Observed MMSE as a function of time relative to the index date for the Gothenburg validation set. The 

red line marks the index date. 
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Figure 5. Predicted MMSE as a function of time relative to the index date for the Gothenburg validation set. 

 

 
Figure 6. Observed versus predicted MMSE for the Gothenburg validation set. 
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Figure 7. Difference between observed and predicted MMSE as a function of time relative to the index date for the 

Gothenburg validation set. 

 

On the IPCI data set, the model performs poorly, with an almost flat slope and very low R-squared 
value. Inspection of the observed MMSE scores reveals that the measurements start to decline 
about a year before the index date, but instead of further declining essentially remain stable (Figure 
8). This may be explained by the fact that IPCI is a primary care database, and general practitioners 
(GPs) in the Netherlands do not routinely collect MMSE measurements. In fact, the follow-up time in 
IPCI is very short, suggesting that most patients in the cohort only have an MMSE assessment at or 
shortly after the index date. There will generally be no need for GPs to measure MMSE again in 
patients diagnosed with dementia as the outcome will not affect the course of dementia, but 
reassessment may be more likely for patients who do not show the cognitive decline that usually 
comes with progressing stages of dementia. Figure 8 also illustrates the huge variability of MMSE 
scores within each of the time intervals. 
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Figure 8. Observed MMSE as a function of time relative to the index date for the IPCI validation set. 

 

The SIDIAP data set is the largest validation set in this study. Figure 9 shows that the observed 
MMSE measurements start to decrease about one and a half year before the index date (marked by 
the red line) and show a very large variability. The median of the observed MMSE values around 
the index date is rather low, at around 19. The predicted MMSE values also show a declining trend, 
but the median estimates are consistently higher than the observed medians (Figure 10). The model 
therefore substantially underestimates the MMSE scores (Figure 11), which is also reflected in the 
high MAD and median absolute difference scores for the SIDIAP data. Figure 11 also suggests that 
recalibration of the model by changing the constant term in the prediction equation could 
considerably improve the model performance for this data set.  

A potential explanation for the underestimation in SIDIAP is that it may be difficult to determine an 
accurate index date. SIDIAP is a primary care database, and the diagnosis of AD dementia is made 
by the GP, who is not a specialist. The diagnosis may have been recorded in the EHR well after the 
onset of dementia. In an attempt to provide more accurate estimates of the index date, part of the 
SIDIAP data was linked to registry information in the Register of Dementias of Girona, which 
contains high-quality dementia records obtained from specialists. The observed MMSE scores for 
the resulting SIDIGI data set are shown in Figure 11. No substantial differences between the MMSE 
patterns in SIDIAP and SIDIGI were observed, with similar median MMSE values of about 19 at 
index date in both data sets. The model performance parameters for SIDIGI in terms of MAD and 
median absolute difference appear slightly better than for SIDIAP (Table 2), but overall indicate poor 
model performance. 
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Figure 9. Observed MMSE as a function of time relative to the index date for the SIDIAP validation set. The red 

line marks the index date. 

 
Figure 10. Predicted MMSE as a function of time relative to the index date for the SIDIAP validation set. 
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Figure 11. Difference between observed and predicted MMSE as a function of time relative to the index date for 

the SIDIGI validation set. 

 

 
Figure 12. Observed MMSE as a function of time relative to the index date for the SIDIGI validation set. The red 

line marks the index date. 
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The Copenhagen data allowed us to investigate the effect of dementia drug use on model 
performance. Model performance was assessed for three patients groups: those who did not use 
any dementia drug, those who used one type of drug, and those who used more than one type of 
drug. Model performance seems to be slightly better for patients who receive more than one 
dementia drug (see Table 2), but overall validation results are still poor. 

The lowest MAD and median absolute difference were obtained for MEMENTO, a memory-clinic 
based cohort study. The observed and predicted MMSE scores are shown in Figure 13 and Figure 
14. Although the variability of the observed measurements within the time intervals is still 
considerable, it is smaller than the variability in the validation sets that were discussed above. As 
illustrated in Figure 15, the median predictions match the median observed measurements 
reasonably well, in particular for the first two and a half years after the index date. 

 

 
Figure 13. Observed MMSE as a function of time relative to the index date for the MEMENTO validation set. 

 

 
Figure 14. Predicted MMSE as a function of time relative to the index date for the MEMENTO validation set. 
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Figure 15. Difference between observed and predicted MMSE as a function of time relative to the index date for 

the MEMENTO validation set. 

 

The plots for all the validation sets are provided in Annex V. 

3.4. Discussion and conclusions 

We validated the MMSE model on a variety of data sets. The validation results indicate poor to 
moderate performance of the model in predicting individual MMSE scores for AD dementia patients. 
Since the original publication about the model did not report evaluation results, we also assessed 
model performance on the Kungsholmen data that was used to develop the model. Interestingly, 
model performance with respect to individual MMSE predictions on the Kungsholmen data set was 
also moderate, and comparable with the validation results of some of the external validation sets. 
The median of the MMSE predictions in the Kungsholmen data matched the median observed 
MMSE values very well. This may not come as a surprise since the model was trained on the 
Kungsholmen data and the model estimation procedure will have minimized the overall differences 
between predicted and observed measurements. 

One may speculate about the causes for the rather poor performance of the model in predicting 
individual MMSE scores. Probably an important reason is the huge variability in the observed 
MMSE measurements at a given point in time after the index date (illustrated by many of the plots in 
the preceding section), in combination with the relative simplicity of the model: it contains only two 
predictors, time since onset of dementia and age at the time of the MMSE prediction, which can 
only account for the variability in the data to a limited extent.  

It should be noted that the model was originally developed mainly to predict MMSE progression at 
the population level (Handels et al., 2013) to serve a health-economic simulation study. The random 
intercept and slope type mixed model allows to describe and simulate the variation between 
individuals but does not allow to predict individual values without using each individually fitted 
model. An alternative model that would for example include the baseline MMSE score as a predictor 
may be expected to yield more accurate individual MMSE predictions over time. 
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There are a number of other factors that may also affect model performance. First, as we have seen 
in the IPCI data, selection bias may play a role. In a primary care setting, MMSE measurements 
may more likely be available for subjects whose cognitive function remains relatively stable.  

Second, the criteria to establish AD dementia varied across the validation sets. Some applied 
DSM/NINCDS criteria, as were used in the Kungsholmen data, but for other validation sets 
dementia diagnoses were based on different coding systems, such as ICD-10, with less granularity 
and possibly less accuracy.  

Third, the time of onset of AD dementia is an important parameter in the model, but can be very 
difficult to establish precisely. This is already true for the Kungsholmen data set, where the index 
date was set half-way the three-year follow-up interval preceding the visit to the study center when 
the dementia diagnosis was established. For some of the other cohorts, the interval between visits 
was shorter, which should reduce the uncertainty in establishing the index date. For EHR-type 
validation sets, there may also be considerable uncertainty in determining the precise onset of 
dementia as setting a diagnosis may also depend on considerations not applicable in a population-
based cohort study (e.g., general practitioners following a wait-and-see scenario, people not willing 
to go through a diagnostic procedure). 

A fourth factor that may affect model performance, is the length of follow-up. For the Kungsholmen 
data, the median follow-up was 1.5 year (interquartile range 1.5 to 4.5 years), but for most validation 
sets follow-up was shorter. If follow-up becomes very short, as for the IPCI and EDAR validation 
sets, the model is essentially used to predict MMSE at or very close to the time of diagnosis. 

Fifth, the data sets vary greatly in size, and in particular for the smaller data sets the performance 
estimates may be less reliable. 

Sixth, patient characteristics vary across the different data sets. Table 2 shows that both age at 
index date and gender distribution of the validation sets may be quite different from the 
Kungsholmen development data. Age is included in the MMSE model. Gender was considered 
during model development but did not prove to be a significant predictor, implying that for those 
aged 75 and older gender does not matter (Handels et al., 2013). However, other variables such as 
comorbidities are not accounted for and may affect model performance in an unpredictable way.  

Finally, the data are likely to contain measurement errors that will affect model performance. We 
have already mentioned the difficulty of establishing a precise dementia onset. Also, some of the 
MMSE scores may have been inaccurate, possibly related to the varying experience of 
heterogeneous examiners (physicians, nurses, psychologists) in using and scoring the MMSE. The 
plots of the observed MMSE measurements for most of the data sets show outliers with improbable 
high or low MMSE values, which may be due to data entry errors. Sometimes the extraction of 
MMSE scores from the data source was challenging. For example, in the Copenhagen database all 
MMSE scores had to extracted from the clinical notes by text mining and were not always captured 
right, producing erroneous MMSE values. Although some scores were manually checked (all scores 
below 4 and score differences of more than 10 within a period of 60 days) and corrected if 
necessary, checking of all scores was infeasible within the available time frame. 
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4. Validation of Novartis’ preclinical model 

4.1. Model description 

Shifting the focus of clinical trials that test disease-modifying interventions against Alzheimer’s 
disease (AD) from the dementia stages of the disease to preclinical stages might increase the 
likelihood of success for these trials (Berk and Sabbagh, 2013). Although various models describing 
cognitive decline in later stages of AD existed (Chua, 2015), a model describing cognitive function in 
the preclinical phase of the disease and predicting time to first diagnosis of mild cognitive 
impairment (MCI) or dementia due to AD was lacking. Hence, there was an urgent need of such a 
model to, e.g., inform the design of trials targeting patients at risk to develop dementia due to AD. 
Under this context, Novartis developed the preclinical model to support the optimization of the 
clinical trial design at the preclinical stages (Caputo et al., 2017; Lestini et al., 2018). 

The preclinical model consisted of three models which were fitted independently on natural history 
cohorts. The first model was a time to event (TTE) model describing time to first diagnosis of MCI 
and dementia due to AD using a Weibull parametric survival model. Then, two mixed-effects models 
were developed to describe the progression of the Alzheimer’s Prevention Initiative Composite 
Cognitive (APCC) (Langbaum et al., 2014) for two subpopulations: the “progressors”, i.e., patients 
with first diagnosis of either MCI or dementia due to AD within eight years from baseline, and “non-
progressors”, i.e., patients who were either not diagnosed or only diagnosed after eight years. Both 
APCC progression models followed a general power model structure, i.e., score (time) = intercept + 
slope*timer. The model covariates were chosen based on the clinical relevance, goodness of model 
fit, and statistical tests (Table 3). The preclinical model was developed on three cohorts (ROS, 
MAP, and MARS) from the Rush Alzheimer’s disease center (Rush) (Bennett et al., 2005) and the 
National Alzheimer's Coordinating Center (NACC) (Viswanathan et al., 2015). The TTE model was 
developed on data of 2,159 subjects from Rush and 8,535 subjects from NACC who were 
cognitively normal at baseline and were diagnosed with MCI or dementia due to AD during follow-
up. To develop the two APCC models, data of 2,336 subjects (732 progressors, 1,604 non/late 
progressors) from Rush who were cognitively normal at baseline and had no other diagnoses than 
MCI or dementia due to AD during follow-up, were used. 

 

Table 3: Covariates and their positions in the preclinical model after systematic covariate selection consisting of 
backward elimination with AIC as the criterion for model selection 

Model Baseline 
APCC 

Education APOε4 status Gender Age 

TTE  × × × 
 

× (at BL*) 
APCC “progressor”  Intercept × × 

 
× × (at event) 

Slope × × × 
  

APCC “non-progressors”  Intercept × × 
 

× × (at BL) 
Slope × × × × × (at BL) 

*BL = baseline, the first APCC measurement when subjects entered the dataset 
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4.2. Data sources 

In collaboration with WP3, two longitudinal datasets from two European electronic healthcare data 
sources were accessed for the external validation study, which aimed at testing and validating the 
performance of the preclinical model in predicting real-world AD progression.  

The first dataset was from two ongoing Gothenburg prospective cohorts including participants 
sampled from the Swedish population register based on birth data (Prospective Population Study of 
Woman (PPSW) (Johansson et al., 2010) and Gerontological and Geriatric Population Studies 
(H70) (Arnoldussen et al., 2018). Diagnoses are based on DSM-III-R. From the received 
Gothenburg dataset, subjects who were non-demented at inclusion (= year 2000) and eventually 
developed AD-type dementia (probable AD, possible AD, AD plus vascular dementia, vascular 
dementia plus AD, mixed plus AD) or remained non-demented during follow-up, were selected for 
the external validation. A total of 617 subjects (complete-cases, with at least 2 APCC proxy values) 
were selected for the validation of the APCC models (558 for the APCC non-progressor model and 
59 for the APCC progressor model), while 718 subjects (complete-cases) were selected for the 
validation of the TTE model. 

The second dataset was from the 4C study (Clinical Course of Cognition and Comorbidity in Mild 
Cognitive Impairment and Dementia Study) (Liao et al., 2016). From the accessed 4C dataset, 
subjects with subjective cognitive impairment (SCI) at inclusion, who eventually developed MCI 
(Petersen criteria) or AD dementia (probable AD and possible AD, NINCDS-ADRDA criteria for AD 
diagnosis) or AD dementia (probable AD and possible AD) or did not progress during follow-up, 
were selected for the external validation. Data of 22 subjects (complete-cases, with at least 2 APCC 
proxy values) were used for validating the APCC progressor model, while data of 121 subjects 
(complete-cases) were used for validating the TTE model. Since the follow-up of the 4C study was 
less than eight years, it was not possible to identify non/late progressors from the validation dataset. 
Thus, the validation of the APCC non/late progressor model was not performed on this dataset.   

4.3. Validation process and results 

The overall comparison between the development dataset and the validation datasets initiated the 
external validation. As shown in Table 4, the validation datasets differed from the development 
dataset in four main aspects. Since APCC was not available in both validation datasets, APCC 
proxies were constructed before performing the predictions. APOε4 status was missing in the 4C 
dataset, thus the mean APOε4 value in the development dataset was used for the validation of the 
APCC progressor model on the 4C dataset, and a sensitivity analysis was applied for the validation 
of the TTE model by assuming that all subjects were APOε4 non-carriers, heterozygotes carriers or 
homozygotes. Because the diagnosis of MCI was not available in the Gothenburg dataset, the event 
in the TTE model was defined as the diagnosis of dementia due to AD. 
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Table 4: Major differences between the development dataset and the validation datasets 

  Development dataset Validation dataset 

Gothenburg dataset 4C dataset 

Diagnosis status at 
baseline 

Cognitively normal Non-demented Subjective cognitive 
impairment (SCI) 

APCC Yes No  No 

Missing key covariate - - APOε4 

Event definition for 
the TTE model 

First diagnosis of MCI or 
dementia due to AD 

First diagnosis of dementia 
due to AD (no MCI) 

First diagnosis of MCI 
or dementia due to AD 

 

The APCC proxies were constructed following three steps. First, the test items from the original 
APCC were replaced by different test items from the same cognitive domains that were available in 
the validation datasets (Table 5). Then, the ranges of test item replacements were rescaled to be 
the same as those in the original APCC, and the APCC proxy was calculated. Finally, the range of 
the obtained overall APCC proxy was rescaled to be the same as the original APCC (i.e., 0-100). 

The time courses of the original APCC scores and the constructed APCC proxies are compared in 
Figure 15. The APCC proxy obtained from the Gothenburg dataset showed a similar pattern as the 
original APCC. The cognitive capacity as characterized by APCC score started to decline a couple 
of years before the diagnosis for progressors (15A-15B), while the time courses of APCC and 
APCC proxy stayed quite flat over time for non/late progressors (15D-15E). However, the APCC 
proxy constructed for progressors in the 4C dataset did not show a clear decline in the preclinical 
stages (15C), possibly due to data size, short follow-up, or diagnosis status at inclusion. 

 
Figure 16. The time courses of APCC and APCC proxy. (A) original APCC on the development data for 
progressors; (B) APCC proxy on the Gothenburg dataset for progressors; (C) APCC proxy on the 4C dataset for 
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progressors; (D) original APCC on the development data for non/late progressors; (E) APCC proxy on the 
Gothenburg dataset for non/late progressors. The black line is the observation per subject. The dot on the black 
line shows the value of each assessment. The blue line is the smooth curve of the observations. The shaded area 
around the blue line is the 95% confidence interval. 

Table 5: Mapping of available cognitive tests in the validation datasets for constructing APCC proxy 

Original APCC (developed in Rush) Comparable cognitive tests in validation dataset and the 
ranges 

Components of 
cognitive tests 

Domain Ranges   Gothenburg dataset 4C dataset 

Word List recall Delayed Memory 0-10 Item recall;  

0-12   

Word list recall;  

0-15 

Logical Memory 
Story A recall 

Delayed Memory 0-25 -  - 

Symbol Digit 
Modalities Test 

Attention 0-110 - Letter Digit Substitution Test;  

0-125 

Judgment of Line 
Orientation 

Visual/Spatial 
ability 

0-15 Visuoconstructional 
apraxia;  

0-6 

MMSE Copy Figure;  

0-1 

Ravens 
Progressive 
Matrices – 
subscale 

Attention / 
Executive 
functioning 

0-9 Word fluency(animals) Word fluency (animals) 

MMSE Orientation 
to Place 

Visual/Spatial 
ability / 
Orientation 

0-5 MMSE Orientation to 
Place;  

0-5 

MMSE Orientation to Place; 

 0-5 

MMSE Orientation 
to Time 

Visual/Spatial 
ability / 
Orientation 

0-5 MMSE Orientation to 
Time;  

0-5 

MMSE Orientation to Time;  

0-5 

 

APCC Total Score = 1.36*WordListRecall + 0.528*LogMemDelRecall + 0.26*SymbDigModal + 
0.68*JudgLineOr + 1.39*ProgrMatrSub + 2.14*MMSEPlace + 2.24*MMSETime 

 

Before using the formula above to construct the APCC proxy, the ranges of the test item replacements should 
be rescaled to be the same as the ranges of the original test items in Rush. The range of the obtained APCC 
proxy should be rescaled to be the same as the range of the original APCC (range 0-100). 

 

After construction of the APCC proxy, the distributions of the covariates required by the preclinical 
model (i.e., APCC (proxy), age, years of education, gender, APOε4 status) were compared between 
the development dataset and the validation datasets. As shown in Figure 17, the Gothenburg 
dataset had a higher median baseline APCC proxy, lower median baseline age, and lower median 
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years of education than the development datasets. The 4C dataset had a comparable median 
baseline APCC proxy, lower median baseline age, and lower median years of education compared 
to the development datasets. The differences in the number of years of education between the 
datasets might be partially explained by the different educational systems of the countries from 
which the data were sourced. 

 

 
Figure 17. Comparison of the distributions of the model covariates between development dataset and validation 

datasets (box plot: median, 25% and 75% quantiles, maximum, minimum, and potential outliers). 

 

The preclinical model was then externally evaluated by comparing the predictions with observations, 
and the performance of the model was assessed via visual checks and a goodness-of-fit measure 
(i.e., root mean square error). Figure 18illustrates the comparison between the observed and 
predicted APCC proxies. The points cluster around the diagonal line for both APCC models (i.e., 
progressors and non/late progressors) in both the Gothenburg and 4C datasets. The root mean 
square error was less than 10% for the APCC predictions. Clear systematic bias was not observed 
in the predictions for progressors when comparing the accuracy of the predictions between type of 
dementia and time since diagnosis (Figure 18A, B and D)). However, the residual progression along 
the nature time was not well captured for non/late progressors on the Gothenburg dataset (Figure 
18C).  
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Figure 18. Comparison of the predicted APCC proxy and the observed ones: (A-B) predictions vs. observations 
on the Gothenburg dataset for progressors; (C) predictions vs. observations on the Gothenburg dataset for 
non/late-progressors; (D) predictions vs. observations on the Gothenburg dataset for non/late-progressors; (D) 
predictions vs. observations on the 4C dataset for progressors. 

 

Error! Reference source not found. shows a comparison between the observed Kaplan-Meier 
survival curve and the survival curve predicted from the preclinical model. Note that the survival 
curve predicted by the model falls in the 95% confidence interval of the Kaplan-Meier estimation in 
the development dataset (Figure 19A, blue lines). The survival curves predicted by the model were 
far from the Kaplan-Meier curves on both external validation datasets (Gothenburg and 4C). This 
could be due to the differences (e.g., diagnosis status at baseline) between the development 
dataset and the validation datasets as shown in Table 4, and the large drop out in the 4C dataset 
(especially between the second year and the third year after inclusion). 
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Figure 19. Comparison of the predicted survival curve and the observed Kaplan-Meier survival curve: (A) 
Gothenburg dataset and development dataset; (B) 4C dataset. The solid lines are predicted survival curves from 
the preclinical model. The dashed lines are observed Kaplan-Meier survival curves. The shaded area shows the 
95% confidence interval. The blue color indicates the results on the development dataset, while the black/grey 
color indicates the results on the validation datasets. 

4.4. Discussion and conclusions 

The preclinical model had its specific prerequisites regarding the population, diagnosis, cognitive 
tests, and follow-up. Despite the differences between the development dataset and the current 
validation datasets (Table 4), the two APCC models were validated on different external datasets 
(i.e. the Gothenburg dataset and the 4C dataset) Figure 18). The APCC models were flexible 
enough to be generalized to predict individual APCC (proxy) time courses on new datasets. Indeed, 
the nature of the APCC models (mixed-effect models) compensated the impacts from the different 
patient characteristics to some extent. Nevertheless, the APCC model for progressors needs to be 
further validated on larger datasets to confirm the current results. Indeed, the current data size (59 
progressors in the Gothenburg dataset, and 22 progressors in the 4C dataset) was small and may 
have limited statistical power. 

The current results suggest that the TTE model part of the preclinical model tended to overestimate 
the overall survival probability on both external validation datasets, implying that this TTE model 
might have limited abilities in identifying patients at high risk to develop AD dementia symptoms on 
real-world datasets. However, because of the differences in population, diagnosis, cognitive tests 
and follow-up (censoring) between the development dataset and current validation datasets, the 
external validation of the TTE model should be further explored. For example, when merely the 
diagnosis of probable AD was selected instead of all AD-related diagnoses (i.e., probable AD, 
possible AD, AD plus vascular dementia, vascular dementia plus AD, mixed plus AD) for the 
external validation of the TTE model on the Gothenburg dataset, the obtained Kaplan-Meier curve 
(black dashed line) in Figure 19A was closer to (still under) the survival curve predicted by the 
model (black solid line). In terms of the 4C dataset, we observed a sharp decline in the Kaplan-
Meier curve between the second year and the third year (Figure 19B). Therefore, an exploration of 
the nature of the censored data or a drop-out model would be needed to understand whether 
censoring occurred at random or whether censoring was conditional on any factor or covariate, thus 
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helping to refine the population selection for the external validation. In addition, a larger and relevant 
dataset is required for a more appropriate external validation of the TTE model. Ideally, the 
validation dataset should have a comparable population as the development dataset (especially the 
diagnosis status at inclusion), a larger number of subjects with a diagnosis during follow-up (e.g,. 
around 30% as in the development dataset), and relatively few dropouts. 

The cognitive composite score (i.e., APCC) adopted by the preclinical model was expected to track 
preclinical cognitive decline in individuals who subsequently progressed to the clinical stages of 
late-onset AD. Since APCC was not available in the external datasets, a well-constructed APCC 
proxy became critical for the external validation of the preclinical model. We note that since not all 
the test items required by the original APCC were available in the validation datasets, the current 
APCC proxies derived from this simple and pragmatic rescaling approach (Table 4) might not 
adequately have captured the preclinical cognitive decline compared to the original APCC. Further 
efforts should be put into the construction of the APCC proxy, and a dataset with richer cognitive 
tests (e.g., the Memento dataset (Dufouil et al., 2017)) would facilitate this work. 

Although the APCC models built under the mixed-effects model framework displayed a satisfactory 
performance during the external validation on the two datasets, a potential systematic bias was 
observed in the APCC model for non/late progressors (Figure 18C). The predicted APCC proxy 
values were smaller than the observed ones in the year 2000 which was used as the baseline. This 
might be due to the fact that the baseline APCC proxy was a covariate in the model. A time term 
might be further introduced into the APCC model structure to better capture the residual 
progression. The current TTE model only adopted the APCC at baseline to predict the risk of 
developing AD symptoms. In order to refine the risk prediction, a joint model (Hickey et al., 2018) 
that fits the longitudinal APCC progression and time to diagnosis at the same time could be 
developed, thus leveraging the APCC decline in the risk predictions.  

The current results of the external validation are encouraging. In order to better describe the 
disease progression of AD, and identify subjects at high risk of developing AD symptoms from pre-
clinical stages, the preclinical model should be further explored with respect to the refinement of the 
model structure (e.g., joint model development), the inclusion of additional relevant covariates, the 
refinement of the APCC proxy, the refinement of population and diagnosis selection, and especially 
perusing appropriate data sources for model development and validation. The journey of this 
external validation study also emphasizes the need for longitudinal real-world datasets of patients 
from the preclinical stage onwards. 
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5. Validation of Eli Lilly’s institutionalization model 

5.1. Model description 

This model predicts the time to institutionalizatio for patients with AD dementia. The model was 
developed as part of a study that examined the costs of caring for community-dwelling AD patients 
in relation to the time to institutionalization (Belger et al., 2018), and builds on earlier work of Green 
et al. (Green et al., 2011). Data for the development of the model were taken from the GERAS 
study, a prospective observational study of costs associated with care of community-dwelling 
caregivers in three European countries (France, Germany, UK) (Wimo et al., 2013). GERAS 
enrolled community-dwelling patients aged at least 55 years, meeting the NINCDS/ADRDA criteria 
for probable AD, with an MMSE score equal to or less than 26. Patients were stratified by disease 
severity at baseline: mild AD dementia (MMSE 21-26), moderate AD dementia (MMSE 15-20), and 
severe AD dementia (MMSE <15). Data were collected at baseline and during routine care visits at 
6, 12 and 18 months in all three countries, and at 24, 30 and 36 months in France and Germany. 
Patient cognitive function was assessed using the MMSE. Functional ability was determined using 
the Alzheimer’s Disease Cooperative Study Activities of Daily Living inventory (ADCS-ADL) 
(Galasko et al., 2005), with a score range of 0-78 (higher scores indicate better functioning). 
Separate subscores were derived for the basic ADL (BADL, score range 0-22) and instrumental 
ADL (IADL, score range 0-56). Behavioral and psychological symptoms were assessed using the 
12-item version of the Neuropsychiatric Inventory (NPI) (score range 0-144), where a higher score 
indicates more severe problems. 

Patients characteristics considered for inclusion in the model were age, gender, years of education, 
time since diagnosis of AD, comorbidities, and baseline scores for MMSE, BADL, IADL, total ADL, 
and NPI. Caregiver characteristics considered were age, gender, relationship with the patient 
(spouse yes/no), and caregiver working for pay (yes/no). The following patient and caregiver factors 
were independently associated with time to institutionalization and were selected for inclusion in the 
final model: MMSE, BADL, IADL, NPI, and caregiver relationship (spouse yes/no), all measured at 
baseline. The prediction equation is: 

Time to institutionalization = exp(7.600 + 0.034 * MMSE + 0.025 * IADL – 0.044 * BADL –  
                                                                                          0.015 * NPI – 0.640 * NoSpousalCaregiver) 

where Time to institutionalization is the predicted number of days till the patient is institutionalized, 
and NoSpousalCaregiver is 1 if there is no spousal caregiver, otherwise 0. 

No external validation of the prediction model has been performed. 

5.2. Data sources 

As documented in Deliverable 3.4, “Final report on proof of concept technical solutions for RWE 
data harmonisation and integration”, data sources for external validation of the time-to-
institutionalization model were sought in the EMIF and DPUK Catalogues. The challenge was to find 
sources that contained informal caregiver information and measurements for the three specific 
cognitive, functional, and behavioral scales (MMSE, ADCS-ADL, NPI) that had been used for the 
model development. Searches in the Catalogues did not result in the identification of cohorts that 
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fulfilled these requirements. Also literature searches for cohorts that are not included in the 
Catalogues, did not reveal suitable data sources. Hence, studies were sought that used the same 
cognitive and behavorial scales and caregiver information as the development cohort, and a 
functional scale that was similar to ADCS-ADL. Two such studies were identified: the ICTUS study 
(Canevelli et al., 2016) and the 4C Dementia Study (Liao et al., 2016). Since access to the 4C data 
set was granted relatively late in the ROADMAP project, in the following the focus for external 
validation of the institutionalization model is on use of the ICTUS data. 

The ICTUS study is a prospective multicenter cohort study aimed at evaluating the clinical course, 
treatment outcome, and the socioeconomic impact of AD in Europe. It involved 29 participating 
centers from 12 European countries. Inclusion criteria were: (1) diagnosis of probable AD according 
to NINCDS-ADRDA criteria; (2) MMSE score in the range of 10-26; (3) living in the community with 
an informal caregiver, and (4) absence of known conditions reducing the patient’s life expectancy. 
After baseline assessment (from 2003 to 2005), participants were followed up for 3 years with 
midterm reevaluations every 6 months. 

Variables in the ICTUS data set include MMSE and the 12-item version of NPI, like in the original 
development set. Functional ability in ICTUS was assessed by the Katz ADL (score range 0-6) 
(Katz et al., 1963) and the Lawton IADL scales (score range 0-8) (Lawton and Brody, 1969). We 
mapped the Katz index to the basic ADCS-ADL and Lawton’s IADL to the instrumental ADCS-ADL 
scale by a simple linear transformation: 

     TargetScore = (maxTargetScore / maxSourceScore) * SourceScore, 

where maxTargetScore is 22 and 56 for BADL and IADL, respectively, and maxSourceScore is 6 
and 8 for the Katz index and Lawton’s IADL, respectively.  

Note that the items in the Katz index can largely be matched with BADL items (Rósza et al., 2009). 
For the IADL scales, mapping of the items is not straightforward, but we assumed that despite 
differences at the item level, similar percentage score on both scales indicated overall similar 
functional ability. 

The ICTUS data also contains information about the primary caregiver, including caregiver status 
(husband, wife, child, friend, other). Information about date of institutionalization and death is also 
available. 

5.3. Validation results 

A total of 1,375 subjects with AD dementia were recruited in the ICTUS study. Of these, 132 were 
excluded because they did not have follow-up data, were not living at their own home at baseline, or 
were younger than 55 years. Of the remaining 1,243 patients, 421 were excluded due to missing 
data, mostly for IADL (n = 402). No data were missing for MMSE, and few for BADL (n = 2) and NPI 
(n = 27). The study population therefore consisted of 822 patients.  

Descriptive characteristics of the ICTUS data at the baseline assessment are shown in Table 6. 
These can be compared with the baseline characteristics of the GERAS data that were used for 
model development (Table 7, information taken from (Berger et al., 2018)). 
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Table 6. Baseline characteristics in the overall study population and by AD dementia severity in the ICTUS data. 

Characteristic Overall Mild AD Moderate AD Severe AD 

Patient, n 822 428 312 82 

Age, mean (SD) 76.8 (7.6) 76.3 (7.5) 77.2 (7.7) 77.7 (7.2) 

Gender, % female 87.3 82.5 92.6 92.7 

MMSE, mean (SD) 20.3 (4.0) 23.5 (1.7) 17.7 (1.7) 13.1 (1.1) 

BADL, mean (SD) 19.8 (3.4) 20.6 (2.6) 19.1 (3.8) 17.6 (4.6) 

IADL, mean (SD) 34.0 (15.9) 39.7 (14.1) 29.3 (15.4) 22.1 (14.0) 

NPI, mean (SD) 13.8 (13.8) 12.1 (12.7) 15.2 (14.1) 17.3 (16.6) 

Caregiver, % spouse 38.3 42.8 33.0 35.4 

 

Table 7. Baseline characteristics in the overall study population and by AD dementia severity in the GERAS data. 

Characteristic Overall Mild AD Moderate AD Severe AD 

Patient, n 1,495 566 472 457 

Age, mean (SD) 77.6 (7.7) 77.3 (6.9) 77.8 (8.0) 77.6 (8.1) 

Gender, % female 54.8 47.9 57.0 61.1 

MMSE, mean (SD) 17.4 (6.3) 23.3 (1.6) 17.9 (1.7) 9.5 (4.3) 

BADL, mean (SD) 17.3 (5.2) 19.8 (3.1) 18.3 (3.8) 13.2 (6.0) 

IADL, mean (SD) 29.1 (15.2) 38.5 (11.8) 29.9 (12.5) 16.6 (12.3) 

NPI, mean (SD) 15.1 (15.3) 10.2 (10.7) 14.3 (12.6) 22.0 (19.4) 

Caregiver, % spouse 65.9 70.6 63.1 62.9 

 

The ICTUS data and the GERAS data differ in their distribution of patients over the AD severity 
groups, with ICTUS having relatively few patients in the severe dementia group. The percentage of 
women in the ICTUS study population is considerably larger than in GERAS, while the percentage 
of spousal caregivers is substantially lower. The mean values of the cognitive, functional and 
behavorial scales in the mild and moderate AD severity groups are largely comparable for both data 
sets, but values for the severe AD group on average suggest greater AD severity of the patients in 
this group in GERAS than in ICTUS. 

Of the 822 patients, 117 (14.2%) were institutionalized during follow-up. This percentage is 
considerably lower than 20.5% institutionalization reported in the GERAS study (Berger et al., 
2018). According to baseline severity, the number of patients institutionalized was 49 (11.4%), 54 
(17.3%), and 14 (17.1%) for the mild AD, moderate AD, and severe AD dementia groups, 
respectively. For the patients who were institutionalized, a scatter plot of the predicted time to 
institutionalization versus the observed time to institutionalization is given in Figure 20. Clearly, the 
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prediction equation greatly overestimates the time to institutionalization, with largest overestimations 
for the mild dementia patients. 

 
Figure 20. Predicted time to institutionalization versus observed time to institutionalization in the ICTUS data set. 

 

For patients who were not institutionalized during follow-up (n = 705), we computed the predicted 
time to institutionalization relative to the date of last follow-up (Figure 21) or, if they died during 
follow-up, relative to the date of death (Figure 22). Figure 21 shows that for the patients not 
institutionalized till last follow-up (n = 644), the predicted date of institutionalization lies after the date 
of the last follow-up assessment for the far majority of patients. Only 32 patients were predicted to 
be institutionalized before last follow-up (3 mild, 19 moderate, and 10 severe AD dementia patients). 
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Figure 21. Time between predicted date of institutionalization and date of last follow-up. 

 

Figure 22 shows that also for patients who died during follow-up without being institutionalized (n = 
58), the predicted date of institutionalization lies later than the date of death for most of the patients. 
Five patients were predicted to be institutionalized before they died, one patient with mild dementia 
at baseline and four with moderate dementia. 
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Figure 22. Time between predicted date of institutionalization and date of death. 

5.4. Discussion and conclusions 

We have evaluated the predictions of the time-to-institutionalization model on the ICTUS data set. 
Our results show a large overestimation of the predicted times for the patients who were 
institutionalized during follow-up. For the patients who were not institutionalized, either because 
they died during follow-up before being institutionalized or because they had not been 
institutionalized at the last follow-up round, the predicted date of institutionalization followed the 
event for most of the patients. 

These results are difficult to compare with those from the study that used the GERAS data as a 
development set. The original paper does not compare predicted and observed time to 
institutionalization on an individual basis. We did not have access to the GERAS data to perform the 
same analyses as we did for the ICTUS data. 

Comparison of the baseline characteristics of the ICTUS and GERAS study populations indicated 
that the mean differences for the cognitive, behavorial and functional scales were generally small for 
the mild and moderate AD severity groups. However, the mean scores for the severe dementia 
group suggested that the severity of this group in GERAS was generally worse than in ICTUS. 
Other differences between the two data sets include the percentage of women and the percentage 
of spousal caregivers, but it remains unclear to what extent these differences affect prediction 
accuracy. To get a better insight in this, it would be necessary to obtain the performance results on 
the GERAS data and compare those with the current results. 
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A possible source of error is the mapping procedure that we used to convert the Katz and Lawton 
functional scales available in ICTUS to the ADCS-ADL functional scales available in GERAS and 
required by the model. We applied a very simple, straightforward mapping based on the score 
ranges of the different scales. A proper validation of the mapping was not possible because we did 
not have a data set that contained both the source and target scales. Comparison of the baseline 
characteristics of the mapped functional scales in ICTUS with the functional scales in GERAS, 
shows comparable values for the mild and moderate dementia patients, but lower values for the 
severe dementia cases. This may be attributed to differences in the study populations, but a less 
accurate mapping for these more severe patients cannot be excluded. 
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6. General discussion and conclusion 
We have done pilot exercises to validate three different disease progression models in the field of 
AD dementia. The validation results for each of these models have been described and discussed 
in the model-specific sections above. Here we want to conclude with a more general discussion on 
several issues and challenges in external model validation. 

First, we had to address heterogeneity of external data sources and issues related to data access. 
For this purpose we developed a validation pipeline that offers a structured approach for external 
validation of a disease progression model. We made use of TRIPOD checklists to acquire basic 
information about the model development and implementation, input and output variables, the 
external data sources, and validation measures. A statistical analysis plan specified the details of 
the analysis. The Jerboa tool was used to transform and anonymize the data at the site where the 
data were stored. Jerboa took as its input a set of simple, standardized data files that could be 
generated locally by the database custodian with minimal effort. The output of Jerboa was further 
processed by an R script that implemented the model and generated the validation results, either 
locally or in a secured remote research environment. Thus, an important requirement for the use of 
many external data sets, viz. that patient level data should stay at the database site, could be met. 
Apart from addressing privacy and governance issues, the validation pipeline offers transparency by 
documenting all of the validation steps and allowing inspection of intermediate results. It also greatly 
simplifies the implementation of additional analyses, which amount to centrally changing the R 
script, locally rerunning it, and gathering the validation results in the remote research environment. 
A decentralized approach to implement changes would have been unwieldy, less transparent and 
more error-prone. 

The full pipeline was tested with nine different data sources for the external validation of the MMSE 
model. We did not perform a formal evaluation of the effort to implement and tune the pipeline for 
the MMSE model, but estimate that adjustment of Jerboa and development of the R script took 
about two weeks of work. The generation of the Jerboa input files may vary across databases but 
typically took another week of work per database. Thus, we were able to quickly generate validation 
results for most data sources once data access had been granted. For a few data sources, 
generation of the Jerboa input files took longer. For example, the MMSE scores in the Copenhagen 
database had to be extracted from free text in the electronic health records, for which an automatic 
algorithm in combination with manual curation was used. The development and testing of this text-
mining algorithm took time. It should also be noted that governance rules of many of the data 
sources that were used for external validation of the MMSE model, did not allow the data to leave 
the local environment. This made the ability to locally execute Jerboa and the R script a crucial 
feature to include these data sets in the validation exercise. For the other two models, we did not 
implement the full validation pipeline, mainly because these models were validated on only one or 
two external data sources of which the (anonymized) data was made available to the investigators 
who performed the validation exercise. Thus, there was no need to locally analyze the data and 
considering the small number of data sources and the effort to adjust the Jerboa tool for these 
models, it was decided to bypass the Jerboa processing step. If more data sources would become 
available for external validation of these models, use of Jerboa should be reconsidered. 



116020 – ROADMAP – D4.4  

 
 

 
© Copyright 2018 ROADMAP Consortium 41	
 
	

Finding suitable validation sets and getting access to their data proved to be a second challenge in 
external model validation. An important reason for the difficulty to find suitable data sets is the large 
variety of variables across data sets. Although the preclinical model and the institutionalization 
model include only five input variables, it proved extremely difficult to find external data sources that 
contained these variables and also provided the required output variable. In fact, the data sources 
that were selected for the current validation exercise of these models required one or two variable 
conversions to meet the model requirements. An important consideration for selection of the MMSE 
model was its relative simplicity: it requires only two input variables (age and time since onset AD 
dementia) and one commonly available output variable, MMSE. We expected that many data 
sources could provide these variables, and indeed we were able to validate the MMSE model on 
nine external data sets. However, for more complex models involving variables that are less 
commonly available, it is likely that few data sources, if any, will meet model requirements. 

The selection of data sources has currently been based on information from the EMIF and DPUK 
Data Catalogues, and by informal contacts between researchers and database owners, as 
described in Deliverable 3.4, “Final report on proof of concept technical solutions for RWE data 
harmonisation and integration”. Future searches for suitable data sources may be facilitated by use 
of the ROADMAP data cube, a resource that brings together information about variables, outcomes, 
and databases (see Deliverable D4.2, “Availability/suitability of data cube”).  

Once potential suitable data sources were identified, data access had to be requested and granted. 
The time to complete this process varied greatly between data sources, from a few weeks to many 
months. For some data sources that were selected at an early stage in the ROADMAP project, it 
proved infeasible to arrange for data access within the project’s life span. We may conclude that 
finding suitable data sources for external validation and arranging for data access can be a lengthy 
process and generally takes much longer than generating the actual validation results. 

Thirdly, there are issues related to the interpretation of the validation results. Our results indicate 
poor to moderate prediction performance on the validation sets for the MMSE model and the 
institutionalization model. For the preclinical models, good results were obtained for the APCC 
models, but not for the survival model. These results may partly be attributed to differences between 
the development set and the validation sets, which are many (as documented in chapters 3-5). 
However, a proper interpretation of the validation results should also take into account the model 
performance on the development set. For instance, the performance of the MMSE model on the 
validation sets was moderate at best for individual predictions, but it turned out that the performance 
on the development set was comparable. This suggests that the moderate performance is intrinsic 
to the model and cannot be explained by differences between the best-performing validation sets 
and the development set, or put differently, the differences between these data sets do not appear 
to affect model performance. For the institutionalization model, we could not compare the validation 
results with the results on the development data. It is therefore difficult to determine whether the 
poor prediction results are caused by differences between the validation set and the development 
set, or are model intrinsic. Interpretation of the external validation results of disease progression 
models requires that the model performance on the development set is known. Ideally, an internal 
validation is performed during model development, e.g., by dividing the development set in a 
training set to develop the model and an independent test set to evaluate its performance, or by 
cross-validation techniques. Unfortunately, very few publications about disease progression models 
report such internal validation results.  
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ANNEX I. TRIPOD model development and validation checklist 

Section/Topic Item  Checklist Item Page 
Title and abstract 

Title 1 D;V* Identify the study as developing and/or validating a multivariable prediction model, the target population, 
and the outcome to be predicted.  

Abstract 2 D;V Provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, 
statistical analysis, results, and conclusions.  

Introduction 

Background and 
objectives 

3a D;V Explain the medical context (including whether diagnostic or prognostic) and rationale for developing or 
validating the multivariable prediction model, including references to existing models.  

3b D;V Specify the objectives, including whether the study describes the development or validation of the model or 
both.  

Methods 

Source of data 4a D;V Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), separately for 
the development and validation data sets, if applicable.  

4b D;V Specify the key study dates, including start of accrual; end of accrual; and, if applicable, end of follow-up.   

Participants 
5a D;V Specify key elements of the study setting (e.g., primary care, secondary care, general population) including 

number and location of centres.  

5b D;V Describe eligibility criteria for participants.   
5c D;V Give details of treatments received, if relevant.   

Outcome 6a D;V Clearly define the outcome that is predicted by the prediction model, including how and when assessed.   
6b D;V Report any actions to blind assessment of the outcome to be predicted.   

Predictors 7a D;V Clearly define all predictors used in developing or validating the multivariable prediction model, including 
how and when they were measured.  

7b D;V Report any actions to blind assessment of predictors for the outcome and other predictors.   
Sample size 8 D;V Explain how the study size was arrived at.  

Missing data 9 D;V Describe how missing data were handled (e.g., complete-case analysis, single imputation, multiple 
imputation) with details of any imputation method.   

Statistical analysis 
methods 

10a D Describe how predictors were handled in the analyses.   

10b D Specify type of model, all model-building procedures (including any predictor selection), and method for 
internal validation.  

10c V For validation, describe how the predictions were calculated.   
10d D;V Specify all measures used to assess model performance and, if relevant, to compare multiple models.   
10e V Describe any model updating (e.g., recalibration) arising from the validation, if done.  

Risk groups 11 D;V Provide details on how risk groups were created, if done.   
Development vs. 
validation 12 V For validation, identify any differences from the development data in setting, eligibility criteria, outcome, 

and predictors.   

Results 

Participants 

13a D;V Describe the flow of participants through the study, including the number of participants with and without 
the outcome and, if applicable, a summary of the follow-up time. A diagram may be helpful.   

13b D;V Describe the characteristics of the participants (basic demographics, clinical features, available predictors), 
including the number of participants with missing data for predictors and outcome.   

13c V For validation, show a comparison with the development data of the distribution of important variables 
(demographics, predictors and outcome).   

Model 
development  

14a D Specify the number of participants and outcome events in each analysis.   
14b D If done, report the unadjusted association between each candidate predictor and outcome.  

Model 
specification 

15a D Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and 
model intercept or baseline survival at a given time point).  

15b D Explain how to the use the prediction model.  
Model 
performance 16 D;V Report performance measures (with CIs) for the prediction model.  

Model-updating 17 V If done, report the results from any model updating (i.e., model specification, model performance).  
Discussion 

Limitations 18 D;V Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing 
data).   

Interpretation 
19a V For validation, discuss the results with reference to performance in the development data, and any other 

validation data.   

19b D;V Give an overall interpretation of the results, considering objectives, limitations, results from similar studies, 
and other relevant evidence.   

Implications 20 D;V Discuss the potential clinical use of the model and implications for future research.   
Other information 

Supplementary 
information 21 D;V Provide information about the availability of supplementary resources, such as study protocol, Web 

calculator, and data sets.   

Funding 22 D;V Give the source of funding and the role of the funders for the present study.   
*Items relevant only to the development of a prediction model are denoted by D, items relating solely to a validation of a prediction model 
are denoted by V, and items relating to both are denoted D;V 
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ANNEX II. TRIPOD development checklists for selected models 

This Annex provides the TRIPOD development checklists for the three selected models: Handels’ 
MMSE model, Novartis’ preclinical model, and Eli Lilly’s institutionalization model. 

Table 1: TRIPOD development checklist for Handels’ MMSE model. 
Section/Topic Ite Checklist Item Page 
Title and abstract 

Title 1 Identify the study as developing and/or validating a multivariable prediction model, the target 
population, and the outcome to be predicted. 357 

  
Natural Progression Model of Cognition and Physical Functioning among People with Mild Cognitive 
Impairment and Alzheimer’s Disease (Handels RL, Xu W, Rizzuto D, et al. J Alzheimers Dis. 
2013;37:357-65) 

 

Abstract 2 Provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, 
statistical analysis, results, and conclusions. 357 

  

Objective: We aimed to estimate AD-free survival time in people with mild cognitive impairment (MCI) 
and decline of cognitive and physical function in AD cases. 
Methods: Within the Kungsholmen project, 153 incident MCI and 323 incident AD cases (international 
criteria) were identified during 9 years of follow-up in a cognitively healthy cohort of elderly people 
aged ≥75 at baseline (n = 1,082). Global cognitive function was assessed with the Mini-Mental State 
Examination (MMSE), and daily life function was evaluated with the Katz index of activities of daily 
living (ADL) at each follow-up examination. Data were analyzed using parametric survival analysis and 
mixed effect models. 
Results: Median AD-free survival time of 153 participants with incident MCI was 3.5 years. Among 323 
incident AD cases, the cognitive decline was 1.84 MMSE points per year, which was significantly 
associated with age. Physical functioning declined by 0.38 ADL points per year and was significantly 
associated with age, education, and MMSE, but not with gender. 
Conclusion: Elderly people with MCI may develop AD in approximately 3.5 years. Both cognitive and 
physical function may decline gradually after AD onset. The empirical models can be used to evaluate 
long-term disease progression of new interventions for AD. 
 
In the following, we focus on one of the models developed in this study, which estimates the changes 
of cognition (as assessed by the MMSE) in incident AD dementia cases. 

 

Introduction 

Background and 
objectives 

3a Explain the medical context (including whether diagnostic or prognostic) and rationale for developing 
or validating the multivariable prediction model, including references to existing models. 358 

 

Natural progression models in AD have been developed in several studies, mostly among clinical 
samples or prevalent AD dementia cases. However, disease modifying treatments are supposed to be 
effective in early (pre-dementia) AD, thus long-term data on the natural course are required to 
evaluate their effectiveness. Such target populations have not been reflected by previous studies, 
leaving an urgent need for population-based empirical models that describe the long-term natural 
progression of the dementia and pre-dementia phases of AD. 

 

3b Specify the objectives, including whether the study describes the development or validation of the 
model or both. 358 

 
 

Objective: Estimate the changes of cognition (MMSE) in incident AD dementia cased from a 
population-based cohort. 
The study describes the development of the model. 

 

Methods 

Source of data 

4a Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), separately 
for the development and validation data sets, if applicable. 358 

 Source of data is the Kungsholmen Project, a population-based cohort study on aging and dementia  

4b Specify the key study dates, including start of accrual; end of accrual; and, if applicable, end of follow-
up.  358 

  The Kungsholmen project started in 1987. Data were collected at baseline and at 3-, 6-, and 9-year 
follow-ups.  

Participants 5a Specify key elements of the study setting (e.g., primary care, secondary care, general population) 
including number and location of centres. 358 
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 General population  
5b Describe eligibility criteria for participants.  358 

 

All registered inhabitants of the Kungsholmen district of Stockholm, Sweden, who were aged ≥75 
years in October 1987, had no dementia, MCI, or an MMSE < 20 at baseline, with incident AD-type 
dementia (either AD or mixed AD & vascular dementia) during follow-up. 
A diagnosis of dementia (including both questionable and definite diagnoses) was established by the 
examining physicians, based on a comprehensive clinical examination and cognitive tests according to 
the DSM-III-R criteria. The diagnostic criteria applied were equivalent to probable AD according to the 
criteria of the National Institute of Neurological and Communicative Dis- orders and Stroke-Alzheimer’s 
Disease and Related Disorders Association, and according to those of the National Institute of 
Neurological Disorders and Stroke-Association Internationale pour la Recherche et l’Enseignement en 
Neurosciences. 

 

5c Give details of treatments received, if relevant.   
  Not reported  

Outcome 
6a Clearly define the outcome that is predicted by the prediction model, including how and when 

assessed.  358 
 Outcome MMSE. Assessment at follow-ups.  

6b Report any actions to blind assessment of the outcome to be predicted.   
  Not reported  

Predictors 

7a Clearly define all predictors used in developing or validating the multivariable prediction model, 
including how and when they were measured. 359 

 
Predictors tested: Age, Gender, Education, and Time after being diagnosed with AD. The onset of AD 
was assumed to have taken place in the middle of each follow-up interval (each lasting an average of 
3 years). This was operationalized by adding a time correction of 1.5 years. Only Age and Time after 
being diagnosed turned out to be significant predictors. 

 

7b Report any actions to blind assessment of predictors for the outcome and other predictors.   
  Not reported  
Sample size 8 Explain how the study size was arrived at. 359 
  No sample size calculations done, entire cohort used  

Missing data 9 Describe how missing data were handled (e.g., complete-case analysis, single imputation, multiple 
imputation) with details of any imputation method.   

  The mixed model with random effects takes missing or censored data into account. 363 

Statistical analysis 
methods 

10a Describe how predictors were handled in the analyses.   
 Not specifically reported, no categorization or transformation  

10b Specify type of model, all model-building procedures (including any predictor selection), and method 
for internal validation. 359 

 

Mixed model with random effects. 
A stepwise procedure was used and predictors were included if the goodness-of-fit statistics −2 log 
likelihood change and Wald z of the predictor were significant. The following steps were used to 
determine the final MMSE prediction model: (1) include time, as years after being diagnosed with AD; 
(2) include a random intercept; (3) determine if time is non-linear by stepwise adding a higher-order 
polynomial of time; (4) include a random time factor; (5) include gender, age, and education and all 2-
way interactions and remove interactions with highest p-values first until p < 0.05, followed by 
predictors. 
No internal validation was performed. 

 

10d Specify all measures used to assess model performance and, if relevant, to compare multiple models.   

  No measures used, model performance not assessed  
Risk groups 11 Provide details on how risk groups were created, if done.   
  Not done  

Results 

Participants 

13a Describe the flow of participants through the study, including the number of participants with and 
without the outcome and, if applicable, a summary of the follow-up time. A diagram may be helpful.  

358, 
359 

 

At baseline, 225 of the 1,810 participants were diagnosed with dementia and 110 participants refused 
the extensive evaluations. Of the remaining 1,475 dementia-free persons, 355 with MCI (130 with 
amnestic MCI (aMCI) and 225 with other cognitive impairment not demented (OCIND)) at baseline and 
38 with very low global cognitive status in the absence of a dementia diagnosis (MMSE) <20) were 
excluded, leaving 1,082 cognitively healthy subjects at baseline. Out of those, 323 developed AD 
during 9-year follow-up.  

 

13b Describe the characteristics of the participants (basic demographics, clinical features, available 
predictors), including the number of participants with missing data for predictors and outcome.  359 
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Age at diagnosis 86.7 (4.1) yrs, 83% female, education 8.2 (2.9) yrs, MMSE at diagnosis 19.7 (5.0), 
Katz ADL at diagnosis 1.2 (0.7). 
No specific information on missing data. 

 

Model 
development  

14a Specify the number of participants and outcome events in each analysis.  360 

 
For the 323 participants who developed AD during follow-up, 313 MMSE scores were available at the 
moment of AD diagnosis, 109 at 3 years after diagnosis, and 28 at 6 years after diagnosis. Forty-nine 
percent of the participants died during follow-up. 

 

14b If done, report the unadjusted association between each candidate predictor and outcome. 362 

  
Regression parameters estimates (95% CI) of univariate mixed effects regression model to predict 
MMSE: Age -0.41 (-0.57 to -0.26), Time after being diagnosed -1.84 (-2.10 to -1.57), Gender -1.14 (-
2.89 to 0.60), Education -0.05 (-0.29 to 0.19).  

 

Model specification 
15a Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, 

and model intercept or baseline survival at a given time point). 360 

 MMSE = 26.87 – 3.26 Time – 0.35 (Age – 75) + 0.10 Time (Age – 75), in which Time is years after 
being diagnosed with AD.  

15b Explain how to the use the prediction model.  
  Not reported, but straightforward  
Model performance 16 Report performance measures (with CIs) for the prediction model.  
  Model performance not assessed  

Discussion 
Limitations 18 Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, 

missing data).  363 

  

The Kungsholmen project included persons aged 75 and older, which resulted in attrition due to death 
and refusal. However, this reflects reality, since most demented people are older than 75, and the 
mixed model with random effects and the survival analysis take missing or censored data into 
account. Nonetheless, generalization to a younger population should be done with caution, A second 
limitation is that the Kungsholmen project started in 1987, when the current cholinesterase inhibitors 
and memantine treatments that affect cognitive decline were not available. Thirdly, the empirical 
models were not adjusted for comorbidities, as this information was not available to the researchers. 
Furthermore, the 1.5 year correction might limit the precision of the time-to dementia conversion. 
The regression and survival models have not been validated by external datasets, or by predicting the 
progress of similar patients in current clinical practice. The data available at follow-up was limited, 
resulting in uncertain predictions. Finally, generalizability to other countries is limited because 
differences in life expectancy might lead to differences in average disease progression rates or the 
effect of age. 

 

Interpretation 19b Give an overall interpretation of the results, considering objectives, limitations, and results from similar 
studies, and other relevant evidence.  

361-
363 

  

A population-based study including 95 incident dementia participants [20, 21] found an average rate of 
cognitive decline of 1.71 MMSE points per 6 months, whereas we found a lower average rate of 
decline (1.84 / 2 = 0.92 points per 6 months). The difference could be explained by the inclusion of a 
higher proportion of moderately severe dementia participants in the Kungsholmen Project, who decline 
less quickly due to the floor effect of the MMSE. According to the multivariate model using average 
age, subjects decline by 1.2 MMSE points in the first 6 months after being diagnosed. Mendiondo et 
al. [22] and Mohs et al. [23] parameterized the annual rate of cognitive decline and found a U-shaped 
pattern with low decline rates in mild and severe dementia and a higher decline rate in between. We 
explored this model, but the results were not significant and could be attributed to the use of a 
population-based sample instead of a clinical sample, as the latter probably includes persons with a 
poorer prognosis because consulting a medical professional is probably initiated by the person’s 
memory complaints. Han et al. [24] reviewed studies largely based on clinical samples of prevalent 
cases with an average of 2 years of follow-up, and found a mean annual rate of decline of 3.3 MMSE 
points per year. Our estimates are at the lower bound of their confidence interval. Besides the use of 
incident community participants, this difference could be explained by the long follow-up time, in which 
some participants reach the floor level of the MMSE. 

 

Implications 20 Discuss the potential clinical use of the model and implications for future research.  363 

  

The empirical models developed in this study (including the MMSE model) could be used to simulate 
the natural disease progression in a cohort and compare this with a scenario where a hypothetical 
future treatment is available. Such predictions can be integrated with evidence on health care 
resource usage and quality of life, and enable policy makers to address questions about the potential 
of new diagnostic or treatment interventions from a cost-effectiveness point of view. Such analyses 
could provide added value to randomized controlled trials which are limited in terms of follow-up time 
or the number of scenarios to compare. 

 

Other information 
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Supplementary 
information 21 Provide information about the availability of supplementary resources, such as study protocol, Web 

calculator, and data sets.   
  No supplemenary resources mentioned  
Funding 22 Give the source of funding and the role of the funders for the present study.  364 
  Dutch Alzheimer’s Society, Center for Translational Molecular Medicine  

 

 

Table 2: TRIPOD development checklist for Novartis’ preclinical model. 
Section/Topic Item Checklist Item Page 
Title and abstract 

Title 
1 Identify the study as developing and/or validating a multivariable prediction model, the target 

population, and the outcome to be predicted.  

 Model for APCC time profile and time to first diagnosis of mild cognitive impairment or dementia due to 
Alzheimer’s disease (AD) in elderly, cognitively normal individuals at risk to develop symptoms of AD -1 

Abstract 

2 Provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, 
statistical analysis, results, and conclusions.  

 

OBJECTIVES: Shifting the focus of clinical trials testing disease-modifying interventions against 
Alzheimer’s disease from the dementia stages of the disease to pre-symptomatic stages may increase 
the likelihood of success for these trials. The aim of this research was to develop a model for the pre-
symptomatic time course in the AD prevention setting to inform clinical trial design. 
METHODS: We developed a statistical model describing time to first diagnosis of mild cognitive 
impairment (MCI) and dementia diagnosis using a Weibull parametric survival model and the 
progression of the Alzheimer’s Prevention Initiative Preclinical Composite (APCC, see Langbaum et 
al. 20142), a measure for cognitive decline, using a non-linear mixed-effects model. We chose model 
covariates based on clinical relevance, goodness of model fit and statistical tests. We trained the 
model on cohorts from the Rush Alzheimer’s disease center (Rush) (ROS, MAP and MARS) and the 
National Alzheimer's Coordinating Center (NACC), US databases including healthy as well as 
cognitively impaired and demented subjects. For the time-to-diagnosis model, we used N=2159 
subjects from Rush and N=8535 subjects from NACC who were cognitively normal at baseline and 
were diagnosed with MCI or dementia due to AD during follow-up. For the APCC model, we used 
N=2336 subjects from Rush who were cognitively normal at baseline and had no other diagnoses than 
MCI or dementia due to AD during follow-up. 
RESULTS: We identified age, apolipoprotein E ε4 (APOε4) status, APCC at baseline and education 
level as important model covariates. Patient simulations showed a good fit between model predictions 
and observed values, for both time to first diagnosis and progression of APCC. Simulations also 
showed that an enrichment strategy focusing on elderly participants yielded a higher power for a given 
hazard ratio of the investigated interventions. 
CONCLUSIONS: The 2-step model linking APCC decline and time to MCI or AD diagnosis is the first 
AD disease progression model for pre-symptomatic stages of the disease. It can be used in the 
context of optimizing design of clinical trials in the prevention setting. Further refinements of the 
model, e.g. including biomarkers such as amyloid-beta and tau as covariates and covering other 
relevant endpoints, external validation of the model, and incorporation into a health economic model to 
evaluate interventions in the prevention setting, are objectives of future research. 

 

Introduction 

Background and 
objectives 

3a Explain the medical context (including whether diagnostic or prognostic) and rationale for developing 
or validating the multivariable prediction model, including references to existing models.  

 

Shifting the focus of clinical trials testing disease-modifying interventions against AD from the 
dementia stages of the disease to pre-symptomatic stages may increase the likelihood of success for 
these trials. Various models describing cognitive decline in later stages of AD exist so far, but a model 
describing cognitive function in the pre-symptomatic phase of the disease and predicting time to first 
diagnosis of MCI or dementia is lacking. Hence, there is an urgent need of such a model to e.g. inform 
the design of trials targeting patients at risk to develop dementia. 

 

3b Specify the objectives, including whether the study describes the development or validation of the 
model or both.  

																																																													
	
1 No publication available. 
2 http://www.sciencedirect.com/science/article/pii/S1552526014000636  
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 The aim of this study was to develop a model for the pre-symptomatic time course in the AD 
prevention setting. The study describes the development of the model.  

Methods 

Source of data 

4a Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), separately 
for the development and validation data sets, if applicable.  

 
Source of data are the Rush and the NACC longitudinal cohorts. 
Rush: Cohort study cohort study of common chronic conditions of aging with emphasis on decline in 
cognitive and motor function and risk of AD.  
NACC: Prospective cohort study with participants from Alzheimer’s Disease Centers (ADCs).  

 

4b Specify the key study dates, including start of accrual; end of accrual; and, if applicable, end of follow-
up.   

 Rush: Started in 1997, still ongoing.  
NACC: Started in 2005, still ongoing.  

Participants 

5a Specify key elements of the study setting (e.g., primary care, secondary care, general population) 
including number and location of centres.  

 

Rush: Participants are older adults recruited from 37 retirement communities and subsidized senior 
housing facilities throughout Chicagoland and north-eastern Illinois. 
NACC: Participants are followed at 39 past and present U.S. ADCs (with or without dementia). 
Subjects may come from clinician referral, self-referral by patients or family members, active 
recruitment through community organizations, and volunteers who wish to contribute to research on 
various types of dementia. Most centers also enrol volunteers with normal cognition.  

 

5b Describe eligibility criteria for participants.   

 

Rush:  
- older persons without known dementia  
- must agree to an assessment of risk factors, blood donation, and a detailed clinical evaluation 

each year 
NACC:  
- participant at a contributing ADC 

 

5c Give details of treatments received, if relevant.   
 Not reported  

Outcome 

6a Clearly define the outcome that is predicted by the prediction model, including how and when 
assessed.   

 
Outcomes:  
- APCC, assessed continuously throughout the study (from Rush) 
- Diagnosis of MCI and dementia due to AD, assessed throughout the study (from Rush and 

NACC) 
 

6b Report any actions to blind assessment of the outcome to be predicted.   
 Not reported  

Predictors 

7a Clearly define all predictors used in developing or validating the multivariable prediction model, 
including how and when they were measured.  

 Tested predictors are APCC at baseline, age at baseline or at time of diagnosis, gender, APOε4 status 
and educational level (years of education).  

7b Report any actions to blind assessment of predictors for the outcome and other predictors.   
 Not reported  

Sample size 8 Explain how the study size was arrived at.  
 No sample size calculations done, entire cohort used  

Missing data 
9 Describe how missing data were handled (e.g., complete-case analysis, single imputation, multiple 

imputation) with details of any imputation method.   

 
APCC model: The mixed effects model takes missing data into account. 
Time-to-first-diagnosis model: The Weibull survival regression model takes censored data into 
account, but removes subjects with missing covariates. 

 

Statistical analysis 
methods 

10a Describe how predictors were handled in the analyses.   
 Continuous predictors were log transformed and centered around their median.  

10b Specify type of model, all model-building procedures (including any predictor selection), and method 
for internal validation.  

 

APCC model: Non-linear mixed effects model (power model). 
Time-to-first-diagnosis model: Weibull survival regression model. 
Model structures were chosen because of their flexibility to fit the data.  
Covariate were chosen based on investigating the predictive value of a set of candidate predictors in a 
systematic way. 
No internal validation performed. 
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10d Specify all measures used to assess model performance and, if relevant, to compare multiple models.   

 Model performance was assessed using diagnostic plots.  

Risk groups 11 Provide details on how risk groups were created, if done.   
 Not done.  

Results 

Participants 

13a Describe the flow of participants through the study, including the number of participants with and 
without the outcome and, if applicable, a summary of the follow-up time. A diagram may be helpful.   

 

APCC model: We evaluated a total of N=2336 subjects from Rush who were cognitively normal at 
baseline, had at least two visits and had no other diagnoses than MCI or dementia due to AD during 
follow-up. Of those subjects, 732 were first diagnosed with MCI or dementia within eight years, and 
1604 stayed cognitively normal within eight years of follow-up. 
Time-to-first diagnosis model: We evaluated a total of N=10694 subjects from Rush and NACC who 
were cognitively normal at baseline, had at least two visits and had no other diagnoses than MCI or 
dementia due to AD during follow-up. Of those subjects, 2870 were first diagnosed with MCI or 
dementia, and 859 were first diagnosed with dementia. 

 

13b Describe the characteristics of the participants (basic demographics, clinical features, available 
predictors), including the number of participants with missing data for predictors and outcome.   

 

APCC model: Mean APCC at baseline 61.0, mean education 16.1 years, 1.1% homozygote carriers of 
APOε4 and 23.6% heterozygote carriers (8.3% missing values) for subjects diagnosed with MCI or 
dementia. Mean APCC at baseline 64.9, mean education 16.0 years, no homozygote carriers of 
APOε4 and 18.0% heterozygote carriers for subjects staying cognitively normal. 
Time-to-first diagnosis model: Mean age at baseline was 74.4 years, mean APCC at baseline was 
63.5 (16.4% missing values), 1.7% homozygote carriers of APOε4 and 20.6% heterozygote carriers 
(39.7% missing values).  

 

Model 
development  

14a Specify the number of participants and outcome events in each analysis.   

 

APCC model: APCC was available for all subjects diagnosed with MCI or dementia at baseline, at four 
subsequent follow-up visits on average, and maximally at seventeen subsequent follow-up visits. 
APCC was available for all subjects staying cognitively normal at baseline, at three subsequent follow-
up visits on average, and maximally at eight subsequent follow-up visits. 
Time-to-first diagnosis model: 2870 subjects were first diagnosed with MCI or dementia (7824 
censored), 859 were diagnosed with dementia (9835 censored). 

 

14b If done, report the unadjusted association between each candidate predictor and outcome.  
 Not reported  

Model specification 

15a Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, 
and model intercept or baseline survival at a given time point).  

 

APCC model for converters, i.e. subjects diagnosed with MCI or dementia within eight years: mixed-
effects power model with predictor APCC at baseline for the intercept and the slope, and predictors 
education and APOε4 carrier status for the slope. 
 
APCC model for non- or late-converters, i.e. subjects staying cognitively normal within eight years: 
linear mixed-effects model with predictors education and age at baseline for the intercept, and 
predictors APCC at baseline, APOε4 carrier status and age at baseline for the slope. 
 
Time-to-first-diagnosis of MCI or AD model: Weibull survival regression model with predictors age at 
baseline, APCC at baseline and APOε4 carrier status. 
 
For clinical trial simulations, the models were linked in the following way: first, time to first diagnosis of 
MCI or AD was simulated. Second, if a subject was diagnosed within 8 years, the APCC model for 
converters was applied to simulate APCC progression for that subject. If a subject was not diagnosed 
within 8 years, the APCC model for non-/late-converters was applied to simulate APCC progression 
for that subject. A further link between the two models exists via the time to event: The APCC models 
the time course using TTE minus 8 years as the baseline and not calendar time t=0. 

 

15b Explain how to the use the prediction model.  
 Straightforward  

Model performance 16 Report performance measures (with CIs) for the prediction model.  
 Model performance not assessed  

Discussion 

Limitations 
18 Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, 

missing data).   

 - APCC in the NACC database is just a proxy 
- Number of subjects in specific subgroups of interest is rather small. Example: APOE4  
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homozygote carriers 
- No biomarker data available, hence, no information on important prognostic factors 
- Model structure needs to be justified, i.e. compared with other model structures 
- Choice of model covariates needs to be justified, i.e. should be done systematically 

Interpretation 

19b Give an overall interpretation of the results, considering objectives, limitations, and results from similar 
studies, and other relevant evidence.   

 

The 2-step model linking APCC decline and time to MCI or AD diagnosis is the first AD disease 
progression model for pre-symptomatic stages of the disease. It can be used in the context of 
optimizing design of clinical trials in the prevention setting, although results have to be considered with 
care since a validation of the model is lacking. Some limitations of the model may be due to the fact 
that the model was originally not developed as a disease model with a broader and more general 
interpretation, but as a basis for trial simulations in a specific setting. Hence, the strategy of the model 
development and model fit was tailored to the requirements of the clinical trial setting. These 
limitations need to be investigated and modifications of the model may be explored to leverage the 
model to a broader application and interpretation. 

 

Implications 
20 Discuss the potential clinical use of the model and implications for future research.   

 
APCC starts to decline in cognitively normal individuals ~5 years before MCI/dementia diagnosis, 
therefore the model could also be used to predict time to MCI/dementia diagnosis in healthy 
individuals once APCC decline has started, i.e. ~2 years before. 

 

Other information 

Supplementary 
information 

21 Provide information about the availability of supplementary resources, such as study protocol, Web 
calculator, and data sets.   

 None  

Funding 22 Give the source of funding and the role of the funders for the present study.   
 The model was developed within Novartis.  

 

 

Table 3: TRIPOD development checklist for Eli Lilly’s institutionalization model. 
Section/Topic Item Checklist Item Page 
Title and abstract 

Title 1 Identify the study as developing and/or validating a multivariable prediction model, the target 
population, and the outcome to be predicted.  

  

Healthcare and societal costs related to the time to institutionalisation in a community-based cohort of 
patients with Alzheimer’s disease dementia Mark Belger1, Josep Maria Haro2, Catherine Reed1, 
Michael Happich1, Josep Maria Argimon3, Giuseppe Bruno4, Richard Dodel5, Roy W. Jones6, Bruno 
Vellas7, Anders Wimo. Publication has been submitted to European Journal of Health Economics.  
The Modelling structure is also described in the following publications (PENTAG model) 

1. Green, C., Shearer, J., Ritchie, C.W., Zajicek, J.P.: Model-based economic evaluation in 
Alzheimer's disease: a review of the methods available to model Alzheimer's disease 
progression. Value Health 14(5), 621‒630 (2011). doi: 10.1016/j.jval.2010.12.008 

2. Bond, M., Rogers, G., Peters, J., Anderson, R., Hoyle, M., Miners, A., Moxham, T., Davis, 
S., Thokala, P., Wailoo, A., Jeffreys, M., Hyde, C.: The effectiveness and cost-effectiveness 
of donepezil, galantamine, rivastigmine and memantine for the treatment of Alzheimer's 
disease (review of Technology Appraisal No. 111): a systematic review and economic 
model. Health Technol. Assess. 16(21), 1‒470 (2012). doi: 10.3310/hta16210. 

 
 

 

Abstract 2 Provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, 
statistical analysis, results, and conclusions.  

  

Objectives: To examine the costs of caring for community-dwelling patients with Alzheimer’s disease 
(AD) dementia in relation to the time to institutionalisation. 

Methods: GERAS was a prospective, non-interventional cohort study in community-dwelling patients 
with AD dementia and their caregivers in three European countries. Using identified factors associated 
with time to institutionalisation, models were developed to estimate the time to institutionalisation for all 
patients. Estimates of monthly total societal costs, patient healthcare costs and total patient costs 
(healthcare and social care together) prior to institutionalisation were developed as a function of the 
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time to institutionalisation. 

Results: Of the 1495 patients assessed at baseline, 307 (20.5 %) were institutionalised over 36 
months. Disease severity at baseline (based on Mini-Mental State Examination [MMSE] scores) was 
associated with risk of being institutionalised during follow-up (p < 0.001). Having a non-spousal 
informal caregiver was associated with a faster time to institutionalisation (944 fewer days versus 
having a spousal caregiver), as was each one-point worsening in baseline score of MMSE, 
instrumental activities of daily living and behavioural disturbance (67, 50 and 30 fewer days, 
respectively). Total societal costs, total patient costs and, to a lesser extent, patient healthcare-only 
costs were associated with time to institutionalisation. In the five years pre-institutionalisation, monthly 
total societal costs increased by more than £1000 (€1166 equivalent for 2010) from £1900 to £3160 
and monthly total patient costs almost doubled from £770 to £1529.  

Conclusions: Total societal costs and total patient costs rise steeply as community-dwelling patients 
with AD dementia approach institutionalisation.  

 
Introduction 

Background and 
objectives 

3a Explain the medical context (including whether diagnostic or prognostic) and rationale for developing 
or validating the multivariable prediction model, including references to existing models.  

 

The PENTAG model has been used for economic models to assess the cost effectiveness of ACHEi’s. 
During these submissions NICE identified a number of weaknesses to the submitted model, these 
focused around the relevance of the data used to build the models. The recent work has focused on 
developing models using the GERAS study data for both time to Institutionalisation, time to death and 
costs and quality of life related to pre-institutionalisation time.  

 

3b Specify the objectives, including whether the study describes the development or validation of the 
model or both.  

 

 

The work is an update on the PENTAG model, using more recent data from The GERAS study. No 
external validation has been performed on the equations used within the model. 
The publication includes equations to predict the time to institutionalisation and equations for cost as a 
relationship to pre-institutionalisation. These are taken from the three-year follow-up data from the 
GERAS study. Additional models are available based on 60 month follow up data from GERAS, and 
including models on time to death, and the relationship of pre-Institutionalisation to to quality of life 
(EQ-5D)  

 

Methods 

Source of data 

4a Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), separately 
for the development and validation data sets, if applicable.  

 

The data comes from the GERAS study (reference is:  

Wimo, A., Reed, C.C., Dodel, R., Belger, M., Jones, R.W., Happich, M., Argimon, J.M., Bruno, G., 
Novick, D., Vellas, B., Haro, J.M.: The GERAS Study: a prospective observational study of costs 
and resource use in community dwellers with Alzheimer’s disease in three European countries – 
study design and baseline findings. J. Alzheimers Dis. 36(2), 385‒399 (2013). doi: 10.3233/JAD-
122392 

 

 

4b Specify the key study dates, including start of accrual; end of accrual; and, if applicable, end of follow-
up.   

  

GERAS is an 18-month, multicentre, observational study designed to assess the direct and indirect 
country costs associated with AD for patients and their caregivers in France, Germany and the UK. 
Patients in France and Germany were being followed for a further 18 months. An addendum to the 
study collected information on Date of death and date of institutionalisation. Recent database lock on 
the 60-month follow up data is available. 
The study enrolled patients between October 1 2010 and September 31 2011. 
Patients and caregivers were evaluated at baseline and every six months 

 

Participants 

5a Specify key elements of the study setting (e.g., primary care, secondary care, general population) 
including number and location of centres.  

 
Patients enrolled were in a community dwelling with a probable AD diagnosis according to the 
National Institute of Neurological and Communicative Disorders, and stroke and Alzheimer’s disease 
and related disorders association (NINCDS-ADRDA) 94 sites were enrolled from three countries 

 

5b Describe eligibility criteria for participants.   

 
Community dwelling 
Age ≥55 years;  
Probable AD (NINCDS-ADRDA) 
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An MMSE score of ≤26 
Presented within the normal course of care 
Patients were excluded if they had a history, clinical signs or imaging of stroke or transient ischemic 
attack, patients with an history of Parkinson’s disease prior to or at the start of AD onset; Probable 
Lewy-body disease. 
Patients were required to have a caregiver who was willing to participate in the study, and were 
defined as an informal carer who would normally take care of day to day activities (not for a health 
care professional) 
 

5c Give details of treatments received, if relevant.   

  
Patients were on standard of care, there was no requirement for patients to be treated with any 
specific AD medication at study entry.(78% received ACHEi’s; 21% were receiving Memantine at study 
enrolment) 

 

Outcome 

6a Clearly define the outcome that is predicted by the prediction model, including how and when 
assessed.   

 

Time to Institutionalisation 
Total societal cost as a function of Pre-Institutionalisation 
Patient medical cost as a function of Pre-Institutionalisation 
Patient medical and social care cost as a function of Pre-Institutionalisation 
 
Models are also available for, but not in publication. 
Time to death 
Quality of as a function of Pre-Institutionalisation 
 
 

 

6b Report any actions to blind assessment of the outcome to be predicted.   
  This is an observational study, no blinding occurred.   

Predictors 

7a Clearly define all predictors used in developing or validating the multivariable prediction model, 
including how and when they were measured.  

 

Two models were considered one including only patient characteristics, and a second model which 
included both patient and caregiver characteristics: 
All predictors measured at baseline: 
Patient characteristics considered: 
Age 
Gender 
Years of education 
Time since diagnosis of AD 
Number of comorbidities 
MMSE score 
Total ADCs-ADl 
Instrumental ADCS-ADL 
Basic ADCS-ADL 
NPI 
AD medication 
 
Caregiver factors considered 
Age 
Gender 
Relationship with patients (spouse yes/no) 
Caregiver working for pay 
 
Sensitivity analysis were considered which looked at interaction terms, and sub-domains of the ADL 
and the NPI 
 
Details of the scales used can be found in the Wilmo publication 

 

7b Report any actions to blind assessment of predictors for the outcome and other predictors.   
  No blinding  
Sample size 8 Explain how the study size was arrived at.  

  

Enrolment was over a 12 month period, with sample size based on country and MMSE severity group. 
Sites were selected within the three countries to aim for approximately equal numbers of patients in 
each MMSE severity group. 
Sample size was based on the precision obtained for estimating costs 
Further details are provided in the Wilmo publication 
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Missing data 9 Describe how missing data were handled (e.g., complete-case analysis, single imputation, multiple 
imputation) with details of any imputation method.   

  

Survival analysis was used for models predicting time to Institutionalisation, patients were censored at 
last visit or at time of discontinuation from the study 
No imputation was performed on missing baseline data as over 97% of baseline data available 
Missing Cost data was imputed based on the reason for missing cost data.The following rules were 
applied: 
 

1. For institutionalised patients, mean monthly costs from the last visit were used for the period 
until institutionalisation and monthly costs for institutionalisation were used from 
institutionalisation up to 18 months for the UK and up to 36 months for France and 
Germany. For patients who died, last observation carried forward was used such that costs 
from the last known visit were extrapolated up to the date of death (no costs after death 
were computed). For patients with other reasons for discontinuation, the multiple imputation 
regression method [19] stratified by MMSE group and country was applied to missing costs. 
The list of factors used in the multiple imputation procedure was selected from those 
identified by Dodel et al. (Dodel, R., Belger, M., Reed, C., Wimo, A., Jones, R.W., Happich, 
M., Argimon, J.M., Bruno, G., Vellas, B., Haro, J.M.: Determinants of societal costs in 
Alzheimer’s disease: GERAS study baseline results. Alzheimers Dement. 11(8), 933‒945 
(2015). doi: 10.1016/j.jalz.2015.02.005) 

 

 

Statistical analysis 
methods 

10a Describe how predictors were handled in the analyses.   
 No transformations were conducted on the continuous variables. 

The caregiver relationship categorical variable was dichotomised into spouse (yes/no).  

10b Specify type of model, all model-building procedures (including any predictor selection), and method 
for internal validation.  

 

Factors associated with time to institutionalisation were explored using Cox proportional hazards 
models of the 36-month data; time to institutionalisation was censored at the time of last follow-up or 
time to death for those subjects who did not report being institutionalised. One hundred different 
models using forward and backward selection were run, selecting 67 % of subjects at random for 
inclusion in the model, and the factors identified in each model summarised. Entry and exclusion of 
individual factors was based on a significance level of 0.05.  

Any factor found to be significant in over 75 % of the models was included in the parametric models 
used to predict time to institutionalisation. To allow for different assumptions around the distribution of 
the data, the parametric models considered exponential, log-logistic, Weibull, log-normal and gamma 
distributions. Model fit was assessed using AIC and BIC model fit statistics, and the best fitting model 
was selected for use in the model that estimated societal and patient costs as a function of time to 
institutionalisation.   

Models were fitted to estimate costs (y) as a function of time to institutionalisation (x). Separate models 
were developed for total societal costs, total patient costs (patient healthcare plus social care costs) 
and patient healthcare costs. For each patient, the predicted time to institutionalisation (Pred_Inst) was 
calculated from the parametric model. Then, for each 6-month visit, the patient’s time to 
institutionalisation (Pre-Inst) was calculated as: Pre-Inst = Pred_Inst – visit. Each individual subject 
time point was treated as independent, had an associated cost and any missing cost visits used the 
imputation methods described earlier. 

 

10d Specify all measures used to assess model performance and, if relevant, to compare multiple models.   

  See above, Time to institutionalisation models were assessed by AIC and BIC, and then a visual 
inspection of the extrapolated curves.  

Risk groups 11 Provide details on how risk groups were created, if done.   
  No risk groups created  

Results 

Participants 

13a Describe the flow of participants through the study, including the number of participants with and 
without the outcome and, if applicable, a summary of the follow-up time. A diagram may be helpful.   

 
1495 patients were enrolled into the study, 307 were institutionalised during the 36-month follow up, 
while 152 patients died before being institutionalised. 298 patients discontinued the study before end 
of follow up period.(18 months UK, and 36 months France and Germany) 

 

13b Describe the characteristics of the participants (basic demographics, clinical features, available 
predictors), including the number of participants with missing data for predictors and outcome.   
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1495 patients enrolled; 566 with Mild AD, 472 moderate and 457 with moderate severe/sever AD at 
baseline. 
Mean (sd) age 77.6 (7.7) years 
, 55% female; 72% married/cohabitating; 76% living in urban area; 96% living in own home; 10.4(3.2) 
years of education; 2.2 (2.2) years since AD diagnosis; baseline MMSE score 17.4 (6.3); ADLscore 
46.5 (19.5); NPI_12 score 15.1 (15.3) 

 

Model 
development  

14a Specify the number of participants and outcome events in each analysis.   

 

1495 patients enrolled 
307 institutionalised in first 36 months 
152 died in first 36 months 
 
Updated figures using the 60 month addendum data are available 
 

 

14b If done, report the unadjusted association between each candidate predictor and outcome.  
  Not available  

Model specification 

15a Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, 
and model intercept or baseline survival at a given time point).  

 

Submitted publication uses just the 36-month data and is reporting the model including caregiver 
factors. The equations using just patient factors and the 60-month addendum data can be provided. 
The models using just patient factors and the 60 month addendum data may be more appropriate for 
use in external validation: 
 
Models from submitted publication: 
 

 
Analysis of maximum likelihood parameter estimates of patient and caregiver factors associated with 
time to institutionalisation from the log-normal model 
 
Models showing the relationships of costs  to pre-Institutionalisation (pre_Inst) 
 

 

 

15b Explain how to the use the prediction model.  
Model performance 16 Report performance measures (with CIs) for the prediction model.  

  Within the economic model alternative parametric models are run in the form of sensitivity analysis 
(These models are available for both the 36 and 60 month analysis)  

Discussion 

Limitations 18 Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, 
missing data).   

  

Patients with no formal caregiver were not eligible for the study 
In the model with patient and caregiver factors, patient age was not selected. If caregiver factors were 
excluded then model uses: 
Patient age, NPI, ADL and MMSE 
Other factors not collected may influence the likelihood of institutionalisation are not considered, also 
reasons for institutionalisation may be country specific (UK model is available) 
There is a possibility of selection bias due to the recruitment of the study participants mostly from 
memory clinics, which may limit the generalisability of the findings as the sample is not fully 
representative of all AD patients living in the community 
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Interpretation 19b Give an overall interpretation of the results, considering objectives, limitations, and results from similar 
studies, and other relevant evidence.   

Implications 20 Discuss the potential clinical use of the model and implications for future research.   
Other information 

Supplementary 
information 21 Provide information about the availability of supplementary resources, such as study protocol, Web 

calculator, and data sets.   

  

The economic model framework described in PENTAG, also has models for time to death, and QoL as 
a function of pre-Institutionalisation. Within the model there is also an equation looking at MMSE 
overtime 
 
The submitted publication described above is just focusing on the methods used to take a model for 
predicting time to Institutionalisation and relating that to costs. 
 
For the development of the economic models to update the PENTAG model we have the following 
information available that makes use of the 60 month follow up data: 
 
Time to Institutionalisation 
Time to death 
Costs as a function of pre-Institutionalisation 
Qol as a function of pre-Institutionalisation 
MMSE over time 
 
Models for UK only cohort have also been developed 

 

Funding 22 Give the source of funding and the role of the funders for the present study.   
  The GERAS study was sponsored by Eli Lilly, and analysis was conducted by Eli Lilly  
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ANNEX III. TRIPOD validation checklist for IPCI 

As an example of the TRIPOD validation checklists, we provide the checklist for the IPCI data set 
below. The topics marked in yellow are data-source specific, and were adjusted accordingly for the 
other validation sets. The topics that were not marked, remain the same for all validation sets. 

 

Section/Topic Item Checklist Item Page 
Title and abstract 

Title 1 Identify the study as developing and/or validating a multivariable prediction model, the target population, 
and the outcome to be predicted.  

  Validation of a model to predict MMSE in incident AD dementia cases  

Abstract 2 Provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, 
statistical analysis, results, and conclusions.  

  TBA  
Introduction 

Background and 
objectives 

3a Explain the medical context (including whether diagnostic or prognostic) and rationale for developing or 
validating the multivariable prediction model, including references to existing models.  

 
Validation of an existing MMSE disease progression model, described in: Handels RL, Xu W, Rizzuto D, 
et al. Natural progression model of cognition and physical functioning among people with mild cognitive 
impairment and alzheimer's disease. J Alzheimers Dis. 2013;37:357-65. 

 

3b Specify the objectives, including whether the study describes the development or validation of the model 
or both.  

  Validation of an existing MMSE model  
Methods 

Source of data 
4a Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), separately 

for the development and validation data sets, if applicable.  

 Source of data is a longitudinal observational database of electronic patient records of Dutch general 
practitioners (GPs), the Integrated Primary Care Information (IPCI) database.   

4b Specify the key study dates, including start of accrual; end of accrual; and, if applicable, end of follow-up.   
  TBA  

Participants 

5a Specify key elements of the study setting (e.g., primary care, secondary care, general population) 
including number and location of centres.  

 
Primary care setting. About 485 Dutch GP participate. IPCI covers roughly 2.4 million subjects. The full 
medical record is available, including free text. For most practices, the communication with other care 
providers is available (referrals, etc.). 

 

5b Describe eligibility criteria for participants.   

 Participants were eligible if they were diagnosed as incident AD dementia and had at least one MMSE 
measurement after date of diagnosis and were ≥75 at diagnosis.  

5c Give details of treatments received, if relevant.   
  Not relevant  

Outcome 

6a Clearly define the outcome that is predicted by the prediction model, including how and when assessed.   
 Predicted outcome is MMSE (Mini-Mental State Examination). Date of MMSE assessment is available, 

no information on how assessment has been done.  

6b Report any actions to blind assessment of the outcome to be predicted.   
  Retrospective study, MMSE assessment did not involve information about the predictors  

Predictors 

7a Clearly define all predictors used in developing or validating the multivariable prediction model, including 
how and when they were measured.  

 Two predictors were used: Age (in year) and Time after being diagnosed with AD (in year). Age is 
derived from the date of birth, Time since AD is derived from the date of AD dementia diagnosis.  

7b Report any actions to blind assessment of predictors for the outcome and other predictors.   
  Retrospective study, predictors assessed independently of other observer information  
Sample size 8 Explain how the study size was arrived at.  

  The study includes all incident cases of AD dementia in the IPCI database that had one or more MMSE 
measurements after diagnosis  

Missing data 9 Describe how missing data were handled (e.g., complete-case analysis, single imputation, multiple 
imputation) with details of any imputation method.   

  Complete-case analysis  
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Statistical analysis 
methods 

10c For validation, describe how the predictions were calculated.  

 MMSE = 26.87 – 3.26 Time – 0.35 (Age – 75) + 0.10 Time (Age – 75), in which Time is years after being 
diagnosed with AD.   

10d Specify all measures used to assess model performance and, if relevant, to compare multiple models.   

 Model performance assessed by linear regression and median absolute deviation (MAD) between 
predicted and observed MMSE measurements  

10e Describe any model updating (e.g., recalibration) arising from the validation, if done.  
  Not done  
Risk groups 11 Provide details on how risk groups were created, if done.   
  Not done  
Development vs. 
validation 12 For validation, identify any differences from the development data in setting, eligibility criteria, outcome, 

and predictors.   

  
Differences in setting of original study (population-based cohort study), eligibility criteria (dementia dx 
based on DSM-III-R, NINCDS-ADRDA), and predictors (onset AD assumed in the middle of follow-up 
interval)  

 

Results 

Participants 

13a Describe the flow of participants through the study, including the number of participants with and without 
the outcome and, if applicable, a summary of the follow-up time. A diagram may be helpful.   

 TBA  
13b Describe the characteristics of the participants (basic demographics, clinical features, available 

predictors), including the number of participants with missing data for predictors and outcome.   

 TBA  
13c For validation, show a comparison with the development data of the distribution of important variables 

(demographics, predictors and outcome).   

  TBA   
Model 
performance 16 Report performance measures (with CIs) for the prediction model.  
  TBA  
Model-updating 17 If done, report the results from any model updating (i.e., model specification, model performance).  
  NA  

Discussion 
Limitations 18 Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, 

missing data).   

  TBA  

Interpretation 

19a For validation, discuss the results with reference to performance in the development data, and any other 
validation data.   

 Model performance on the development data has not been reported  

19b Give an overall interpretation of the results, considering objectives, limitations, results from similar 
studies, and other relevant evidence.   

  TBA  
Implications 20 Discuss the potential clinical use of the model and implications for future research.   
  TBA  

Other information 
Supplementary 
information 21 Provide information about the availability of supplementary resources, such as study protocol, Web 

calculator, and data sets.   

  TBA  
Funding 22 Give the source of funding and the role of the funders for the present study.   
  ROADMAP  
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ANNEX IV. Jerboa installation and user manual 

 

 
 
 
 
 

 

 

 
 
	

Validation	of	Handels’	Prediction	Model	
		
	
	

Data	Preparation	and	Quality	Control	Run	
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1 Introduction 
	
This	document	describes	the	creation	of	the	input	files	for	the	validation	study	of	the	MMSE	prediction	
model	developed	by	Handels	et	al.	(J	Alzheimers	Dis.	2013;37:357-65).	The	first	run	that	will	be	done	on	
these	input	files	is	a	Primary	Data	Extraction	and	Quality	Control	run	using	Jerboa.	Jerboa	is	used	in	a	
so-called	distributed	network	in	which	each	database	is	elaborated	locally	and	analytical	anonymized	
datasets	can	be	shared	(figure	1).		
	
Jerboa	runs	on	the	JAVA	platform	on	any	modern	computer.	
	

	
Figure	1.	Jerboa	model	for	distributed	computing	on	databases.	

	
The	output	of	the	program	can	be	viewed	and	approved	by	the	data	custodian	locally.	An	encrypted	
copy	of	the	output	is	also	created	that	needs	to	be	uploaded	to	the	Remote	Research	Environment	called	
Octopus	at	Erasmus	MC	for	further	analysis	as	shown	in	figure	2.		
	

	
Figure	2.	Octopus	Remote	Research	Environment.	
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2 Jerboa data preparation 
	
For	the	the	validation	study	of	Handels	et	al.	we	need	three	input	files:	patients.txt,	measurements.txt,	
and	events.txt.	We	do	not	use	prescriptions.	
	
The	following	format	is	used	for	the	patient	IDs	and	dates:	

Patient IDs 

A	patient	ID	is	an	alphanumeric	string	of	characters	that	uniquely	identifies	a	patient.	Patient	IDs	can	be	
numbers	(1,	2,	3,	etc.)	or	combination	of	numbers	and	letters	(a01,	a02,	b01,	etc.).	Maximum	length	of	
the	Patient	ID	is	32	characters.		
	
Important:	No	duplicate	patient	IDs	are	allowed.	

Date formatting 

All	dates	should	be	formatted	as	YYYYMMDD.	
	
For	example:	the	28th	of	March,	2008,	is	formatted	as:		
	
20080328		
	

File format 

	
The	input	files	should	be	in	CSV	(Comma-Separated	Values)	format.	The	first	row	should	contain	the	
column	headers	(the	column	header	names	provided	below	per	file	are	mandatory).	The	order	of	the	
columns	and	rows	is	not	important.		
	
Note	that	missing	values	are	not	allowed	except	if	specified!	If	a	record	in	an	input	file	contains	a	
missing	value,	the	entire	record	is	considered	inconsistent	and	placed	in	a	list	of	erroneous	records.	
Jerboa	will	automatically	detect	the	patient	file	based	on	the	header	so	the	name	of	the	file	is	irrelevant	
(we	suggest	to	add	a	date	to	your	input	filenames,	for	example	2013-05-10-Patient.txt,	to	keep	track	of	
multiple	versions).	
		
Important:	The	input	file	is	always	checked	for	integrity	before	processing.	If	inconsistencies	are	
found,	an	error	log	is	produced	for	each	input	file	and	the	user	is	asked	to	correct	all	errors	before	
continue.	  
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Patient.txt 

The	patient	file	has	one	record	for	each	patient	in	your	source	population,	containing	the	following	
variables:	
	

PatientID	 Patient	Identifier	

BirthDate	 Date	of	birth	

Gender	 Gender	of	the	patient	

StartDate	 Date	from	which	the	patient	is	eligible	to	start	follow-up		in	the	study.	This	is	
typically	the	date	the	patient	is	entered	into	the	registration	system	(date	of	
registration	with	insurance/region,	date	GP	started	to	collaborate)	

EndDate	 Date	that	follow-up	for	this	patient	ends	from	a	database	perspective		(e.g.	end	
of	registration	with	GP,	insurance,	moving	out,	death,	last	data	draw	down	
(whichever	is	earliest)	

	
NOTE:	include	all	patients	of	your	source	population.	The	cut-offs	required	by	the	validation	study	will	
be	performed	by	Jerboa	(e.g.,	implementing	the	age	limit	of	75	years	of	age	of	older).		
	
Example	of	patients	input	file:	
	
patientid,gender,birthdate,startdate,enddate	
1,F,19590601,19950802,20050701	
2,M,19830301,19960912,20060903	
	
Gender	
The	gender	of	a	patient	can	have	one	of	the	following	values:	
	
FEMALE	 	 	 F	
MALE		 	 	 M	
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Events.txt 

This	input	file	contains	information	about	the	diagnostic	events	of	the	patients	in	Patient.txt.		
	
PatientID	 Patient	identifier	

Date	 Date	of	the	event	
EventType	 Type	of	event	(see	below)	

Code	 Optional	diagnostic	code	or	free	text	

		
No	missing	values	for	these	variables	are	allowed,	except	for	Code.	
	
The	following	events	need	to	be	extracted	(see	the	Statistical	Analysis	Plan	for	details	on	mapping):	
	
EventType	 Description	
DementiaAD	 Dementia,	Alzheimer	

DementiaVascular	 Dementia,	vascular	

DementiaOther	 Dementia,	other	causes	
Note:	Create	this	event	for	cases	where	another	type	
of	dementia	(that	is,	not	Alzheimer	or	vascular)	is	
known,	e.g.,	frontotemporal,	Morbus	Pick,	Lewy	
bodies,	Kreutzfeld,	posterior	cortical	atrophy.	The	
specific	type	does	not	have	to	be	specified.		

DementiaNOS	 Dementia,	Not	Otherwise	Specified	
Note:	Create	this	event	for	cases	where	further	sub-
classification	by	type	of	dementia	is	not	possible.	

	
Example	of	events	input	file:	
	
patientid,date,eventtype,code	
1,20040601,DementiaAD,,	
	
	
NOTE:	include	all	events	for	all	patients	of	your	source	population.	The	cut-offs	required	by	the	
validation	study	will	be	performed	by	Jerboa	(e.g.,	implementing	the	age	limit	of	75	years	of	age	of	
older).		
	
NOTE:	Different	event	types	may	be	specified	per	patient	(e.g.,	DementiaNOS	and	DementiaAD),	as	well	
as	multiple	occurrences	of	the	same	event	type	(e.g.,	DementiaAD	diagnosed	at	more	than	one	date).	
Jerboa	determines	the	final	event	type	and	occurrence.	
	
NOTE:	If	a	patient	has	been	diagnosed	with	a	mixed	dementia	(e.g.,	AD	and	vascular	dementia),	the	
event	types	corresponding	with	the	constituent	types	of	dementia	(i.e.,	DementiaAD	and	
DementiaVascular)	have	to	be	specified	with	the	same	date	of	diagnosis.	
	
Clinical	definitions:	
	
We	distinguish	three	types	of	dementia	in	this	study:	Alzheimer’s	disease	dementia	(DementiaAD),	
vascular	dementia	(DementiaVascular),	and	dementia	due	to	other	causes	(DementiaOther).	In	addition,	
the	diagnosis	Dementia	Not	Otherwise	Specified	(DementiaNOS)	refers	to	patients	with	dementia	
where	the	type	of	dementia	is	not	known.	
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Alzheimer’s	dementia	is	the	most	common	cause	of	dementia	(for	the	different	types	of	dementia,	we	
used	definitions	provided	by	https://www.alzheimers.org.uk).	The	word	dementia	describes	a	set	of	
symptoms	that	can	include	memory	loss	and	difficulties	with	thinking,	problem-solving	or	language.		
Alzheimer’s	disease,	named	after	the	doctor	who	first	described	it	(Alois	Alzheimer),	is	a	physical	
disease	that	affects	the	brain.	During	the	course	of	the	disease,	proteins	build	up	in	the	brain	to	form	
structures	called	‘plaques’	and	‘tangles’.	This	leads	to	the	loss	of	connections	between	nerve	cells,	and	
eventually	to	the	death	of	nerve	cells	and	loss	of	brain	tissue.	People	with	Alzheimer’s	also	have	a	
shortage	of	some	important	chemicals	in	their	brain.	These	chemical	messengers	help	to	transmit	
signals	around	the	brain.	When	there	is	a	shortage	of	them,	the	signals	are	not	transmitted	as	
effectively.			
	
Vascular	dementia	is	the	second	most	common	type	of	dementia.	The	word	dementia	describes	a	set	of	
symptoms	that	can	include	memory	loss	and	difficulties	with	thinking,	problem-solving	or	language.	In	
vascular	dementia,	these	symptoms	occur	when	the	brain	is	damaged	because	of	problems	with	the	
supply	of	blood	to	the	brain.			
	
Dementia	due	to	other	causes	includes	the	following	diagnoses:		
Dementia	with	Lewy	bodies.	Dementia	with	Lewy	bodies	(DLB)	is	a	type	of	dementia	that	shares	
symptoms	with	both	Alzheimer’s	disease	and	Parkinson’s	disease.	It	may	account	for	10-15	per	cent	of	
all	cases	of	dementia.	Lewy	bodies	are	named	after	the	German	doctor	who	first	identified	them.	They	
are	tiny	deposits	of	a	protein	(alpha-synuclein)	that	appear	in	nerve	cells	in	the	brain.	Researchers	don’t	
have	a	full	understanding	of	why	Lewy	bodies	appear,	or	exactly	how	they	contribute	to	dementia.	Lewy	
bodies	are	the	cause	of	DLB	and	Parkinson’s	disease.	They	are	two	of	several	diseases	caused	by	Lewy	
bodies	that	affect	the	brain	and	nervous	system	and	get	worse	over	time.	These	are	sometimes	called	
Lewy	body	disorders.	The	way	someone	is	affected	by	DLB	will	depend	partly	on	where	the	Lewy	
bodies	are	in	the	brain.	People	with	a	Lewy	body	disorder	can	have	problems	with	movement	and	
changes	in	mental	abilities	at	the	same	time.		
Frontotemporal	dementia.	Frontotemporal	dementia	is	one	of	the	less	common	types	of	dementia.	The	
term	covers	a	wide	range	of	different	conditions.	It	is	sometimes	called	Pick’s	disease	or	frontal	lobe	
dementia.	The	word	‘frontotemporal’	refers	to	the	lobes	of	the	brain	that	are	damaged	in	this	type	of	
dementia.	The	frontal	lobes	of	the	brain,	found	behind	the	forehead,	deal	with	behaviour,	problem-
solving,	planning	and	the	control	of	emotions.	An	area	of	usually	the	left	frontal	lobe	also	controls	
speech.	The	temporal	lobes	–	on	either	side	of	the	brain	–	have	several	roles.	The	left	temporal	lobe	
usually	deals	with	the	meaning	of	words	and	the	names	of	objects.	Frontotemporal	dementia	occurs	
when	nerve	cells	in	the	frontal	and/or	temporal	lobes	of	the	brain	die,	and	the	pathways	that	connect	
the	lobes	change.	Some	of	the	chemical	messengers	that	transmit	signals	between	nerve	cells	are	also	
lost.	Over	time,	as	more	and	more	nerve	cells	die,	the	brain	tissue	in	the	frontal	and	temporal	lobes	
shrinks.	When	the	frontal	and/or	temporal	lobes	are	damaged	in	this	way,	this	causes	the	symptoms	of	
FTD.	These	include	changes	in	personality	and	behaviour,	and	difficulties	with	language.	These	
symptoms	are	different	from	the	memory	loss	often	associated	with	more	common	types	of	dementia,	
such	as	Alzheimer’s	disease.		
Creutzfeldt-Jacob	disease.	Creutzfeldt-Jakob	disease	(CJD)	is	caused	by	an	abnormally	shaped	protein	
called	a	prion	infecting	the	brain.	Sporadic	CJD,	which	normally	affects	people	over	40,	is	the	most	
common	form	of	the	disease.	It	is	estimated	that	the	disease	affects	about	one	out	of	every	1	million	
people	each	year.	It	is	not	known	what	triggers	sporadic	CJD,	but	it	is	not	known	to	be	inherited	or	
otherwise	transmitted	from	person	to	person.	A	more	recently	identified	form	of	CJD,	called	new	
variant	CJD,	was	caused	by	eating	meat	from	cattle	infected	with	bovine	spongiform	encephalopathy	
(BSE).	This	typically	affected	younger	adults.	In	new	variant	CJD,	there	may	be	many	years	between	a	
person	being	infected	and	the	development	of	symptoms.	In	sporadic	CJD,	the	disease	usually	
progresses	within	a	few	months.	Early	symptoms	include	minor	lapses	of	memory,	mood	changes	and	
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loss	of	interest.	Within	weeks	the	person	may	complain	of	clumsiness	and	feeling	muddled,	become	
unsteady	walking,	and	have	slow	or	slurred	speech.	Symptoms	progress	to	jerky	movements,	shakiness,	
stiffness	of	limbs,	incontinence	and	loss	of	the	ability	to	move	or	speak.	By	this	stage	the	person	is	
unlikely	to	be	aware	of	their	surroundings	or	disabilities.	People	affected	by	CJD	usually	die	within	six	
months	of	their	early	symptoms	developing.	In	a	small	number	of	patients	the	disease	may	take	longer	
to	run	its	course.		
Posterior	cortical	atrophy.	Posterior	cortical	atrophy	(PCA),	also	known	as	Benson’s	syndrome,	is	a	rare	
degenerative	condition	in	which	damage	occurs	at	the	back	(posterior	region)	of	the	brain.	In	the	vast	
majority	of	people,	the	cause	of	PCA	is	Alzheimer’s	disease.	The	first	symptoms	of	PCA	tend	to	occur	
when	people	are	in	their	mid-50s	or	early	60s.	However,	the	first	signs	are	often	subtle	and	so	it	may	be	
some	time	before	a	formal	diagnosis	is	made.	Initially,	people	with	PCA	tend	to	have	a	relatively	well-
preserved	memory	but	experience	problems	with	their	vision,	such	as	difficulty	recognising	faces	and	
objects	in	pictures.	They	may	also	have	problems	with	literacy	and	numeracy.	These	tasks	are	
controlled	by	the	back	part	of	the	brain,	where	the	initial	damage	in	PCA	occurs.	As	damage	in	the	brain	
spreads	and	the	disease	progresses,	people	develop	the	more	typical	symptoms	of	Alzheimer’s	disease,	
such	as	memory	loss	and	confusion.	There	are	no	specific	medications	for	the	treatment	of	PCA	but	
some	people	find	medications	for	Alzheimer’s	disease	helpful.	
	
Mixed	dementia.	A	given	patient	can	have	more	than	one	type	of	dementia	–	a	mixed	dementia.	For	
patients	who	have	been	diagnosed	with	mixed	dementia,	the	data	custodians	are	asked	to	create	the	
different	dementia	event	types	that	constitute	the	mixed	dementia,	with	the	same	date	of	diagnosis.	
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Measurements.txt 

This	input	file	contains	information	about	measurements,	vital	signs	and	laboratory	values	of	the	
patients	in	Patient.txt.		
	

	
	
	
	
	

No	missing	values	for	these	variables	are	allowed.	
	
	
	

	
	
	
Example	of	measurements	input	file:	
	
patientid,date,measurementtype,value	
1001,20150202,MMSE,16	
	
	
NOTE:	Please	include	all	measurements	of	all	patients	of	your	source	population,	but	only	if	the	possible	
values	of	the	MMSE	measurements	range	from	0	to	30.	Exclude	MMSE	measurements	if	the	maximum	
attainable	value	is	less	than	30,	e.g.,	when	not	all	areas	of	cognitive	function	that	are	part	of	the	MMSE	
were	tested.	

	  

PatientID	 Patient	identifier	
MeasurementType	 Type	of	the	measurement	(see	table	below)	

Date		 Date	of	the	measurement	

Value	 Value	of	the	measurement	

MeasurementType	 Description	 Possible	values		
MMSE	 Mini-Mental	State	Examination	 0-30	
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How to run Jerboa? 

Prerequisites	
	
Jerboa	requires	the	latest	Java	version	in	order	to	run.	You	can	download	it	from	here:	
http://www.java.com/en/download/manual.jsp/  
 
Following this link, choose the appropriate Java version for your operating system (e.g., Windows, Mac OS X, 
Linux) and its type (e.g., 32 bits or 64 bits). To find out what type of operating system you are running, do the 
following: 

- On Windows : right click on My Computer à Properties à see System Type 
- On Linux: open a terminal (Ctrl + Alt + T) and type “getconf LONG_BIT” 

 
Instructions	on	how	to	install	Java	can	be	found	here	as	well,	but	if	you	need	help	please	let	us	know.	
Possibly,	you	need	the	help	of	your	local	technical	staff	with	administrator’s	rights	to	install	new	
software	on	your	machine.	
	
Downloading	the	latest	version	of	Jerboa	and	the	script	from	Octopus	
	
The	database	owners	need	to	have	access	to	Octopus	to	be	able	to	download	and	upload	files.	If	you	do	
not	have	access	yet,	please	ask	for	an	application	form	by	sending	an	email	to	rre@erasmusmc.nl.	
	
The	latest	version	of	Jerboa	and	the	script	for	the	current	run	can	always	be	found	in	Octopus	using	
FileZilla.	Instructions	on	how	to	use	FileZilla	can	be	found	in	the	documentation	and	video	sent	to	all	
Octopus	users.		
	
When	you	login	using	FileZilla	you	will	see	a	folder	named	Jerboa-<Project	Name>.	In	this	folder	you	
can	find	a	zip	file	with	Jerboa,	the	script	(.jsf),	and	documentation.	
Download	and	unzip	the	zip	file	into	a	folder	and	copy	the	script	file	into	the	folder	containing	your	
input	files.	
	
Running	Jerboa	
	
Double-click	on	the	JerboaReloaded.jar	file	to	start	Jerboa.	After	accepting	the	license,	you	will	see	the	
screen	in	Figure	1.		
	

	
 
 
 
 
 
	
	
	
 
Figure 1. Opening a working folder 
	
1. You	can	choose	your	working	folder	containing	the	input	data	file	by	clicking	the	browse	button.	In	

the	first	run	of	the	Jerboa	software,	the	folder	where	the	JerboaReloaded.jar	file	is	located	is	
selected	as	default.	If	this	folder	corresponds	to	the	location	of	your	input	file(s),	just	press	OK.	
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Previously	used	workspaces	are	remembered	and	available	to	open	by	clicking	the	dropdown	list	at	
the	left	of	the	browse	button.		

	
Important:	Make	sure	that	the	provided	script	file	(e.g.,	script.jsf)	is	in	your	chosen	working	folder.		
	
2. Once	a	working	folder	is	selected	press	OK	to	continue.	The	screen	in	Figure	2	will	appear.	As	long	

as	the	patient	file	contains	all	mandatory	columns,	it	will	automatically	be	loaded	and	recognized,	as	
shown	in	the	Patients	file	panel	on	the	upper	side	of	the	screen.	If	no	patient	file	is	found	this	will	be	
indicated.	Note	that	multiple	patient	files	in	the	same	folder	are	not	allowed	for	this	run.	

	
	

Figure 2. The application has successfully loaded the patients file 
	
	

3. Now click the start button and select your database. If your database is not listed, you can add it using the 
add button. 

	
	
	
 
 
 
 

	
Figure 3. Selecting your database 
	

 
4. The application will check the input files and will report any errors found. 
	
	
4.a	If	errors	are	found	in	the	input	file(s),	the	user	is	informed	as	shown	in	Figure	4.	
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Figure 4.  Errors in the input file(s) 

	
The	user	can	check	the	errors	by	clicking	the	«	View	»	menu	and	selecting	«	File	Errors	».	The	screen	
shown	in	Figure	5	will	appear	showing	on	the	left	side	the	error	message	and	on	the	right	side	the	
actual	content	of	the	record	in	the	input	file.	Alternatively,	an	error	log	file	is	generated	for	each	input	
file.	These	files	can	be	found	in	the	«	logs	»	folder	of	the	current	Jerboa	run.		
	
Important:	In	the	working	folder,	a	folder	called	«	jerboa	»	is	created.	This	folder	contains	all	the	files	
generated	during	each	run	of	the	Jerboa	software.	For	each	run,	an	individual	folder	is	created	inside	
the	«	jerboa	»	folder.	The	folder	name	is	formed	by	the	date	of	the	run	and	the	run	number.	This	will	
allow	you	to	keep	a	log	of	previous	runs.	Figure	6	shows	an	example	of	the	folder	structure	created	after	
a	run.		
	
	

	
	
Figure	5.	Results	file	checking	
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Figure 6: Folder structure created during Jerboa runs 
4.b.	If	no	errors	are	found	in	the	input	file(s)	the	application	will	proceed.	An	indication	of	the	time	left	
to	finish	the	current	step	is	given	in	the	progress	bar	on	the	bottom	of	the	screen.	
	

	
Figure 7. Input data checking was successful and processing the data following the script 
During	the	run	feedback	is	given	in	the	form	of	a	graph	showing	the	active	male	and	female	patients	in	
your	database	per	year.	For	each	newly	generated	graph	a	tab	is	created	on	the	top	of	the	window.		
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Primary	Data	Extraction	Module	(PDE)	
	
The	PDE	extracts	some	basic	information	about	your	patient	input	file.	For	example,	the	number	of	
active	patients,	births,	start	dates,	etc.	
	
In	Figure	8	some	examples	are	shown.	
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Figure 8. Examples on simulated data 
	
Some	of	the	graphs	are	generated	for	males	and	females	seperately	(use	Next	and	Previous	buttons).	It	
is	possible	to	zoom	in	by	drawing	a	zoom	window	in	the	Graph.	If	you	drag	to	the	left	the	graph	will	
zoom	out	to	its	original	view.	Right-click	for	more	zooming	options	like	zooming	only	one	axis	or	print	
the	graph.	In	the	result	folder	a	pdf	is	created	containing	all	the	plots.		
	
Quality	Control	Module	(QCM)	
	
The	QCM	creates	an	overview	of	the	events	and	their	codes,	and	measurements	in	your	input	files.	This	
allows	you	to	double	check	that	you	are	not	missing	items	or	see	unexpected	data.	Please	have	a	good	
look	at	these	graphs!	
	

	

	
Figure	9.	Example	of	Quality	Control	Module	Graphs	
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On	the	left	(see	figure	9)	you	can	select	many	parameters	that	might	be	of	interest	to	you.	This	module	
also	generates	a	pdf	file	in	the	result	folder	and	a	number	of	txt	files	that	will	be	encrypted	in	the	.enc	
file	(see	below)	for	sharing.	The	PI	of	the	study	will	double	check	these	files	as	quality	control	after	
uploading	to	our	server.	
	
5. In	the	final	step	Jerboa	will	produce	an	.enc	file.	This	is	an	encrypted	file	containing	the	output	files.	

The	file	is	to	be	found	in	the	folder	of	the	current	run	(e.g.,	MyFolder/Data/jerboa/2013-05-09-
03/).	The	location	is	also	shown	in	the	console	(or	click	on	Results).	This	file	should	be	sent	to	EMC	
following	the	procedure	described	below.	

	
Sending	data	to	EMC	with	the	use	of	Octopus	
	
The	.enc	file	should	be	uploaded	to	Octopus	using	the	FileZilla	procedure	as	described	in	the	Octopus	
instructions.	Please	create	a	folder	with	the	name	of	the	project	in	your	upload	folder	and	upload	the	
Jerboa	output	there.	
	
Send	an	email	to	rre@erasmusmc.nl	with	subject	“[RRE	FTP]	ROADMAP	Val1	upload	from	database	
<database	name>”.	
	
For	any	questions	regarding	Jerboa	or	Octopus,	please	use	the	same	email	address.	
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ANNEX V. Plots of observed and predicted MMSE values for all 
data sources 
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Observed MMSE as a function of time relative to the index date for the development set 
(Kungsholmen) and 11 validation sets. 
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Predicted MMSE as a function of time relative to the index date for the development set 
(Kungsholmen) and 11 validation sets. 
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Observed versus predicted MMSE for the development set (Kungsholmen) and 11 validation 
sets. 
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Difference between observed and predicted MMSE as a function of time relative to the index 
date for the development set (Kungsholmen) and 11 validation sets. 
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